1
|
Usoltsev O, Tereshchenko A, Skorynina A, Kozyr E, Soldatov A, Safonova O, Clark AH, Ferri D, Nachtegaal M, Bugaev A. Machine Learning for Quantitative Structural Information from Infrared Spectra: The Case of Palladium Hydride. SMALL METHODS 2024; 8:e2301397. [PMID: 38295064 DOI: 10.1002/smtd.202301397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/09/2024] [Indexed: 02/02/2024]
Abstract
Infrared spectroscopy (IR) is a widely used technique enabling to identify specific functional groups in the molecule of interest based on their characteristic vibrational modes or the presence of a specific adsorption site based on the characteristic vibrational mode of an adsorbed probe molecule. The interpretation of an IR spectrum is generally carried out within a fingerprint paradigm by comparing the observed spectral features with the features of known references or theoretical calculations. This work demonstrates a method for extracting quantitative structural information beyond this approach by application of machine learning (ML) algorithms. Taking palladium hydride formation as an example, Pd-H pressure-composition isotherms are reconstructed using IR data collected in situ in diffuse reflectance using CO molecule as a probe. To the best of the knowledge, this is the first example of the determination of continuous structural descriptors (such as interatomic distance and stoichiometric coefficient) from the fine structure of vibrational spectra, which opens new possibilities of using IR spectra for structural analysis.
Collapse
Affiliation(s)
- Oleg Usoltsev
- ALBA Synchrotron, Cerdanyola del Valles, Barcelona, 08290, Spain
| | | | - Alina Skorynina
- ALBA Synchrotron, Cerdanyola del Valles, Barcelona, 08290, Spain
| | | | - Alexander Soldatov
- Southern Federal University, Sladkova 178/24, Rostov-on-Don, 344090, Russia
| | - Olga Safonova
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Adam H Clark
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Davide Ferri
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Maarten Nachtegaal
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Aram Bugaev
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| |
Collapse
|
2
|
Chen J, Su Y, Meng Q, Qian H, Shi L, Darr JA, Wu Z, Weng X. Palladium Encapsulated by an Oxygen-Saturated TiO 2 Overlayer for Low-Temperature SO 2 -Tolerant Catalysis during CO Oxidation. Angew Chem Int Ed Engl 2023; 62:e202310191. [PMID: 37849070 DOI: 10.1002/anie.202310191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/25/2023] [Accepted: 10/16/2023] [Indexed: 10/19/2023]
Abstract
The development of oxidation catalysts that are resistant to sulfur poisoning is crucial for extending the lifespan of catalysts in real-working conditions. Herein, we describe the design and synthesis of oxide-metal interaction (OMI) catalyst under oxidative atmospheres. By using organic coated TiO2 , an oxide/metal inverse catalyst with non-classical oxygen-saturated TiO2 overlayers were obtained at relatively low temperature. These catalysts were found to incorporate ultra-small Pd metal and support particles with exceptional reactivity and stability for CO oxidation (under 21 vol % O2 and 10 vol % H2 O). In particular, the core (Pd)-shell (TiO2 ) structured OMI catalyst exhibited excellent resistance to SO2 poisoning, yielding robust CO oxidation performance at 120 °C for 240 h (at 100 ppm SO2 and 10 vol % H2 O). The stability of this new OMI catalyst was explained through density functional theory (DFT) calculations that interfacial oxygen atoms at Pd-O-Ti sites (of oxygen-saturated overlayers) serve as non-metal active sites for low-temperature CO oxidation, and change the SO2 adsorption from metal(d)-to-SO2 (π*) back-bonding to much weaker σ(Ti-S) bonding.
Collapse
Affiliation(s)
- Jingkun Chen
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yuetan Su
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Qingjie Meng
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, 315211, P. R. China
| | - Hehe Qian
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, P. R. China
| | - Le Shi
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jawwad A Darr
- Christopher Ingold Laboratories, Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Zhongbiao Wu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang Provincial Engineering Research Centre of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, 310058, P. R. China
| | - Xiaole Weng
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, P. R. China
| |
Collapse
|
3
|
Zhou L, Sun Y, Wu Y, Zhu Y, Xu Y, Jia J, Wang F, Wang R. Controlled Growth of Pd Nanocrystals by Interface Interaction on Monolayer MoS 2: An Atom-Resolved in Situ Study. NANO LETTERS 2023. [PMID: 38010863 DOI: 10.1021/acs.nanolett.3c03960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The crystal growth kinetics is crucial for the controllable preparation and performance modulation of metal nanocrystals (NCs). However, the study of growth mechanisms is significantly limited by characterization techniques, and it is still challenging to in situ capture the growth process. Real-time and real-space imaging techniques at the atomic scale can promote the understanding of microdynamics for NC growth. Herein, the growth of Pd NCs on monolayer MoS2 under different atmospheres was in situ studied by environmental transmission electron microscopy. Introducing carbon monoxide can modulate the diffusion of Pd monomers, resulting in the epitaxial growth of Pd NCs with a uniform orientation. The electron energy loss spectroscopy and theoretical calculations showed that the CO adsorption assured the specific exposed facets and good uniformity of Pd NCs. The insight into the gas-solid interface interaction and the microscopic growth mechanism of NCs may shed light on the precise synthesis of NCs on two-dimensional (2D) materials.
Collapse
Affiliation(s)
- Liang Zhou
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Yinghui Sun
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Yusong Wu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuchen Zhu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Yingying Xu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Jianfeng Jia
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China
| | - Fang Wang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China
| | - Rongming Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
4
|
Salcedo A, Zengel D, Maurer F, Casapu M, Grunwaldt JD, Michel C, Loffreda D. Identifying the Structure of Supported Metal Catalysts Using Vibrational Fingerprints from Ab Initio Nanoscale Models. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300945. [PMID: 37093193 DOI: 10.1002/smll.202300945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/12/2023] [Indexed: 05/03/2023]
Abstract
Identifying active sites of supported noble metal nanocatalysts remains challenging, since their size and shape undergo changes depending on the support, temperature, and gas mixture composition. Herein, the anharmonic infrared spectrum of adsorbed CO is simulated using density functional theory (DFT) to gain insight into the nature of Pd nanoparticles (NPs) supported on ceria. The authors systematically determine how the simulated infrared spectra are affected by CO coverage, NP size (0.5-1.5 nm), NP morphology (octahedral, icosahedral), and metal-support contact angle, by exploring a diversity of realistic models inspired by ab initio molecular dynamics. The simulated spectra are then used as a spectroscopic fingerprint to characterize nanoparticles in a real catalyst, by comparison with in-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) experiments. Truncated octahedral NPs with an acute Pd-ceria angle reproduce most of the measurements. In particular, the authors isolate features characteristic of CO adsorbed at the metal-support interface appearing at low frequencies, both seen in simulation and experiment. This work illustrates the strong need for realistic models to provide a robust description of the active sites, especially at the interface of supported metal nanocatalysts, which can be highly dynamic and evolve considerably during reaction.
Collapse
Affiliation(s)
- Agustin Salcedo
- ENS de Lyon, CNRS UMR 5182, Laboratoire de Chimie UMR CNRS 5182, 46 Allée d'Italie, 69364, Lyon, France
| | - Deniz Zengel
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131, Karlsruhe, Germany
| | - Florian Maurer
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131, Karlsruhe, Germany
| | - Maria Casapu
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131, Karlsruhe, Germany
| | - Jan-Dierk Grunwaldt
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131, Karlsruhe, Germany
| | - Carine Michel
- ENS de Lyon, CNRS UMR 5182, Laboratoire de Chimie UMR CNRS 5182, 46 Allée d'Italie, 69364, Lyon, France
| | - David Loffreda
- ENS de Lyon, CNRS UMR 5182, Laboratoire de Chimie UMR CNRS 5182, 46 Allée d'Italie, 69364, Lyon, France
| |
Collapse
|
5
|
Tereshchenko AA, Butova VV, Guda AA, Burachevskaya OA, Bugaev AL, Bulgakov AN, Skorynina AA, Rusalev YV, Pankov IV, Volochaev VA, Al-Omoush M, Ozhogin IV, Borodkin GS, Soldatov AV. Rational Functionalization of UiO-66 with Pd Nanoparticles: Synthesis and In Situ Fourier-Transform Infrared Monitoring. Inorg Chem 2022; 61:3875-3885. [PMID: 35192334 DOI: 10.1021/acs.inorgchem.1c03340] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Functionalization of metal-organic frameworks (MOFs) with noble metal nanoparticles (NPs) is a challenging task. Conventional impregnation by metals often leads to agglomerates on the surface of MOF crystals. Functional groups on linkers interact with metal precursors and promote the homogeneous distribution of NPs in the pores of MOFs, but their uncontrolled localization can block channels and thus hinder mass transport. To overcome this problem, we created nucleation centers only in the defective pores of the UiO-66 MOF via the postsynthesis exchange. First, we have introduced defects into UiO-66 using benzoic acid as a modulator. Second, the modulator was exchanged for amino-benzoic acid. As a result, amino groups have decorated mainly the defective pores and attracted the Pd precursor after impregnation. The interaction of the metal precursor with amino groups and the growth of NPs were monitored by in situ infrared spectroscopy. Three processes were distinguished: the gaseous HCl release, NH2 reactivation, and growth of extended Pd surfaces. Uniform Pd NPs were located in the pores because of the homogeneous distribution of the precursor and pore diffusion-limited nucleation rate. Our work demonstrates an alternative approach of controlled Pd incorporation into UiO-66 that is of great importance for the rational design of heterogeneous catalysts.
Collapse
Affiliation(s)
- Andrei A Tereshchenko
- The Smart Materials Research Institute, Southern Federal University, Sladkova, 178/24, 344090 Rostov-on-Don, Russia
| | - Vera V Butova
- The Smart Materials Research Institute, Southern Federal University, Sladkova, 178/24, 344090 Rostov-on-Don, Russia
| | - Alexander A Guda
- The Smart Materials Research Institute, Southern Federal University, Sladkova, 178/24, 344090 Rostov-on-Don, Russia
| | - Olga A Burachevskaya
- The Smart Materials Research Institute, Southern Federal University, Sladkova, 178/24, 344090 Rostov-on-Don, Russia
| | - Aram L Bugaev
- The Smart Materials Research Institute, Southern Federal University, Sladkova, 178/24, 344090 Rostov-on-Don, Russia
| | - Aleksei N Bulgakov
- The Smart Materials Research Institute, Southern Federal University, Sladkova, 178/24, 344090 Rostov-on-Don, Russia
| | - Alina A Skorynina
- The Smart Materials Research Institute, Southern Federal University, Sladkova, 178/24, 344090 Rostov-on-Don, Russia
| | - Yury V Rusalev
- The Smart Materials Research Institute, Southern Federal University, Sladkova, 178/24, 344090 Rostov-on-Don, Russia
| | - Ilya V Pankov
- Institute of Physical and Organic Chemistry, Southern Federal University, Stachki Ave., 194/2, 344090 Rostov-on-Don, Russia
| | - Vadim A Volochaev
- Institute of Physical and Organic Chemistry, Southern Federal University, Stachki Ave., 194/2, 344090 Rostov-on-Don, Russia
| | - Majd Al-Omoush
- The Smart Materials Research Institute, Southern Federal University, Sladkova, 178/24, 344090 Rostov-on-Don, Russia
| | - Ilya V Ozhogin
- Institute of Physical and Organic Chemistry, Southern Federal University, Stachki Ave., 194/2, 344090 Rostov-on-Don, Russia
| | - Gennadii S Borodkin
- Institute of Physical and Organic Chemistry, Southern Federal University, Stachki Ave., 194/2, 344090 Rostov-on-Don, Russia
| | - Alexander V Soldatov
- The Smart Materials Research Institute, Southern Federal University, Sladkova, 178/24, 344090 Rostov-on-Don, Russia
| |
Collapse
|
6
|
Xie C, Xu YP, Gao ML, Xu ZN, Jiang HL. MOF-Stabilized Pd Single Sites for CO Esterification to Dimethyl Carbonate. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22020085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Zhang X, Li W, Zhou Z, Chen K, Wu M, Yuan L. High dispersed Pd supported on CeO2 (1 0 0) for CO oxidation at low temperature. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|