1
|
Sidhu JS, Kaur G, Chavan AR, Chahal MK, Taliyan R. Phenoxy-1,2-dioxetane-based activatable chemiluminescent probes: tuning of photophysical properties for tracing enzymatic activities in living cells. Analyst 2024; 149:5739-5761. [PMID: 39569538 DOI: 10.1039/d4an01082e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
The use of chemiluminophores for tracing enzymatic activities in live-cell imaging has gained significant attention, making them valuable tools for diagnostic applications. Among various chemiluminophores, the phenoxy-1,2-dioxetane scaffold exhibits significant structural versatility and its activation is governed by the chemically initiated electron exchange luminescence (CIEEL) mechanism. This mechanism can be initiated by enzymatic activity, changes in pH, or other chemical stimuli. The photophysical properties of phenoxy-1,2-dioxetanes can be fine-tuned through the incorporation of different substituents on the phenolic ring and by anchoring them with specific triggers. This review discusses the variations in physicochemical properties, including emission maxima, quantum yield, aqueous solubility, and pKa, as influenced by structural modifications, thereby establishing a comprehensive structure-activity relationship. Furthermore, it categorises the probes based on different enzyme classes, such as hydrolase-sensitive probes, oxidoreductase-responsive probes, and transferase-activatable phenoxy-1,2-dioxetanes, offering a promising platform technology for the early diagnosis of diseases and disorders. The summary section highlights key opportunities and limitations associated with applying phenoxy-1,2-dioxetanes in achieving precise and effective enzyme assays.
Collapse
Affiliation(s)
- Jagpreet Singh Sidhu
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India.
| | - Gurjot Kaur
- Khalsa College Amritsar, Punjab, 143002, India
| | - Atharva Rajesh Chavan
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India.
| | - Mandeep K Chahal
- School of Chemistry and Forensic Science, University of Kent, Canterbury, CT2 7NH, UK
| | - Rajeev Taliyan
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India.
| |
Collapse
|
2
|
Shen Q, Zhang Q, Yang Y, Yu X, Zang L, Zhang W, Shen D. Wavelength-dependent photoelectrochemical response demonstrated by the determination of acetaminophen and rutin in differential molecularly imprinted polymers strategy. Talanta 2024; 270:125640. [PMID: 38211357 DOI: 10.1016/j.talanta.2024.125640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/23/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
Herein, the excitation wavelength-dependent responses of the molecularly imprinted polymer (MIP) photoelectrochemical (PEC) sensors were investigated, using acetaminophen (AP), rutin (RT) and perfluorooctanoate (PFOA) as the model templates, pyrrole as functional monomer, CuInS2@ZnS/TiO2 NTs as the basic photoelectrode. With wavelength λ > 240 nm, the photocurrent of MIPPFOA enhanced at higher concentrations of PFOA. With increasing AP concentration, the photocurrents of MIPAP could decline with λ < 271 nm, not change at λ = 270 nm, or increase with λ > 270 nm. As RT concentration increased, the photocurrents of MIPRT could decrease (λ < 431 nm), not change (λ = 431 nm) or increase (λ > 431 nm). The PEC responses depend on the comprehensive interaction of two contrary mechanisms from the template molecules within the MIP membrane. The photocurrent is enhanced by the role of the electron donor for photo-generated holes but attenuated due to the steric hindrance effect and the excitation light intensity loss via absorption or scattering. The apparent molar absorption coefficient of AP and RT within MIP membranes are 9.1-19.4 folds of those measured from dilute solutions. By using a routine UV lamp as the light source, the photocurrents of MIPRT at 254 nm and MIPAP at 365 nm were used to determine RT and AP, with the detection limits of 5.3 and 16 nM, respectively. The interference from the non-specific adsorption of interferents on the surfaces of MIPAP and MIPRT was reduced by one order of magnitude via a differential strategy.
Collapse
Affiliation(s)
- Qirui Shen
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, PR China
| | - Qiao Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, PR China
| | - Yan Yang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, PR China
| | - Xifeng Yu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, PR China
| | - Lixin Zang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, PR China
| | - Wei Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, PR China
| | - Dazhong Shen
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, PR China.
| |
Collapse
|
3
|
İslamoğlu N, Mülazımoğlu İE, Demir Mülazımoğlu A. Sensitive and selective determination of paracetamol in antipyretic children's syrup with a polyglycine modified glassy carbon electrode. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4149-4158. [PMID: 37575052 DOI: 10.1039/d3ay00789h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
A sensitive and selective electrochemical sensor for the determination of paracetamol (acetaminophen) is proposed based on a polyglycine-coated glassy carbon electrode. The electrochemical behavior of paracetamol was studied by cyclic voltammetry and differential pulse voltammetry. Under optimal experimental conditions, the peak oxidation current of paracetamol increases linearly in the range of 0.5-75 μM. The limit of detection of paracetamol was 0.03 μM and the limit of quantitation was 0.09 μM. In addition, modified glassy carbon with polyglycine as the sensor was successfully used for the determination of paracetamol in antipyretic children's syrup samples, with a recovery rate of over 95.3%, showing its great application potential in drug analysis.
Collapse
Affiliation(s)
- Nesim İslamoğlu
- Necmettin Erbakan University, Institute of Science, Chemistry Department, Konya, Turkiye.
| | - İbrahim Ender Mülazımoğlu
- Necmettin Erbakan University, Ahmet Keleşoğlu Education Faculty, Chemistry Department, Konya, Turkiye.
| | - Ayşen Demir Mülazımoğlu
- Necmettin Erbakan University, Ahmet Keleşoğlu Education Faculty, Chemistry Department, Konya, Turkiye.
| |
Collapse
|
4
|
Venkata Prasad G, Vinothkumar V, Joo Jang S, Eun Oh D, Hyun Kim T. Multi-walled carbon nanotube/graphene oxide/poly(threonine) composite electrode for boosting electrochemical detection of paracetamol in biological samples. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Hefnawy MA, Medany SS, Fadlallah SA, El-Sherif RM, Hassan SS. Novel Self-assembly Pd(II)-Schiff Base Complex Modified Glassy Carbon Electrode for Electrochemical Detection of Paracetamol. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00741-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractA self-assembly Pd-Schiff base complex was synthesized and used as an electrochemical sensor in phosphate buffer solution, where it enhanced the electrocatalytic activity toward the paracetamol detection. The Schiff base {(HL) = (4-(((Z)-3-(hydroxyimino) butan-2-ylidene) amino)-1,5-dimethyl-2-phenyl-1,2-dihydro-3H-pyrazol-3-one)} was selected to prepare Pd-based complexes due to its high antimicrobial activity. A linear calibration curve was constructed using GC/Pd-SB in paracetamol concentration range of 1–50 μM and its detection limit was calculated as 0.067 μM. The modified electrode, GC/Pd-SB, could successfully determine the paracetamol concentration in human blood serum and commercial drug tablets with high sensitivity. The prepared metal complex was characterized using techniques, namely, X-ray diffraction (XRD) and scanning electron microscope (SEM). In addition, electrochemical studies were performed using different electrochemical techniques like cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS). DFT calculations were used to estimate the equilibrium geometry, molecular orbital, ground-state properties, and interaction energy between paracetamol and palladium.
Graphical Abstract
Collapse
|
6
|
Yu Y, Guan W, Yuan Z, Lu C. Cationic AIEgen micelle-improved chemiluminescent H 2O 2 assay by integrating reactant approach and CRET. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1671-1677. [PMID: 35420072 DOI: 10.1039/d2ay00372d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The enhancement of chemiluminescence (CL) intensity is significant in the development of chemiluminescent detection systems with improved sensitivity. In this study, a cationic surfactant with an intrinsic aggregation-induced emission emitter (AIEgen) has been applied to boost the CL signal of the horseradish peroxidase-luminol-H2O2 system. The formed cationic AIEgen micelles enhance the CL signal in two ways: the electrostatic attraction-mediated enrichment and approach of reactants and the high CRET efficiency between excited luminol radicals and AIEgen in the surfactant backbone. As a result, strong CL intensity is produced. Rapid and sensitive H2O2 detection is realized through the proposed cationic AIEgen micelle-containing chemiluminescent system with a limit of detection of 100 nM. The favourable selectivity over other possible interferents including metal ions and anions is due to the specific chemical reaction. Practical H2O2 analysis of thawing water samples with high accuracy using the proposed chemiluminescent platform is realized and is consistent with standard methods.
Collapse
Affiliation(s)
- Youkai Yu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Weijiang Guan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Zhiqin Yuan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
7
|
Qin Y, Hang C, Huang L, Cheng H, Hu J, Li W, Wu J. An electrochemical biosensor of Sn@C derived from ZnSn(OH)6 for sensitive determination of acetaminophen. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
8
|
Selective Molecular Recognition of Low Density Lipoprotein Based on β-Cyclodextrin Coated Electrochemical Biosensor. BIOSENSORS-BASEL 2021; 11:bios11070216. [PMID: 34209334 PMCID: PMC8301920 DOI: 10.3390/bios11070216] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/21/2022]
Abstract
The excess of low-density lipoprotein (LDL) strongly promotes the accumulation of cholesterol on the arterial wall, which can easily lead to the atherosclerotic cardiovascular diseases (ACDs). It is a challenge on how to recognize and quantify the LDL with a simple and sensitive analytical technology. Herein, β-cyclodextrins (β-CDs), acting as molecular receptors, can bind with LDL to form stable inclusion complexes via the multiple interactions, including electrostatic, van der Waals forces, hydrogen bonding and hydrophobic interactions. With the combination of gold nanoparticles (Au NPs) and β-CDs, we developed an electrochemical sensor providing an excellent molecular recognition and sensing performance towards LDL detection. The LDL dynamic adsorption behavior on the surface of the β-CD-Au electrode was explored by electrochemical impedance spectroscopy (EIS), displaying that the electron-transfer resistance (Ret) values were proportional to the LDL (positively charged apolipoprotein B-100) concentrations. The β-CD-Au modified sensor exhibited a high selectivity and sensitivity (978 kΩ·µM−1) toward LDL, especially in ultra-low concentrations compared with the common interferers HDL and HSA. Due to its excellent molecular recognition performance, β-CD-Au can be used as a sensing material to monitor LDL in human blood for preventing ACDs in the future.
Collapse
|
9
|
Ong JJ, Pollard TD, Goyanes A, Gaisford S, Elbadawi M, Basit AW. Optical biosensors - Illuminating the path to personalized drug dosing. Biosens Bioelectron 2021; 188:113331. [PMID: 34038838 DOI: 10.1016/j.bios.2021.113331] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023]
Abstract
Optical biosensors are low-cost, sensitive and portable devices that are poised to revolutionize the medical industry. Healthcare monitoring has already been transformed by such devices, with notable recent applications including heart rate monitoring in smartwatches and COVID-19 lateral flow diagnostic test kits. The commercial success and impact of existing optical sensors has galvanized research in expanding its application in numerous disciplines. Drug detection and monitoring seeks to benefit from the fast-approaching wave of optical biosensors, with diverse applications ranging from illicit drug testing, clinical trials, monitoring in advanced drug delivery systems and personalized drug dosing. The latter has the potential to significantly improve patients' lives by minimizing toxicity and maximizing efficacy. To achieve this, the patient's serum drug levels must be frequently measured. Yet, the current method of obtaining such information, namely therapeutic drug monitoring (TDM), is not routinely practiced as it is invasive, expensive, time-consuming and skilled labor-intensive. Certainly, optical sensors possess the capabilities to challenge this convention. This review explores the current state of optical biosensors in personalized dosing with special emphasis on TDM, and provides an appraisal on recent strategies. The strengths and challenges of optical biosensors are critically evaluated, before concluding with perspectives on the future direction of these sensors.
Collapse
Affiliation(s)
- Jun Jie Ong
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Thomas D Pollard
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Alvaro Goyanes
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Universidade de Santiago de Compostela, 15782, Spain
| | - Simon Gaisford
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Mohammed Elbadawi
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom.
| |
Collapse
|