1
|
Patil SA, Jagdale PB, Singh A, Singh RV, Khan Z, Samal AK, Saxena M. 2D Zinc Oxide - Synthesis, Methodologies, Reaction Mechanism, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206063. [PMID: 36624578 DOI: 10.1002/smll.202206063] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Zinc oxide (ZnO) is a thermally stable n-type semiconducting material. ZnO 2D nanosheets have mainly gained substantial attention due to their unique properties, such as direct bandgap and strong excitonic binding energy at room temperature. These are widely utilized in piezotronics, energy storage, photodetectors, light-emitting diodes, solar cells, gas sensors, and photocatalysis. Notably, the chemical properties and performances of ZnO nanosheets largely depend on the nano-structuring that can be regulated and controlled through modulating synthetic strategies. Two synthetic approaches, top-down and bottom-up, are mainly employed for preparing ZnO 2D nanomaterials. However, owing to better results in producing defect-free nanostructures, homogenous chemical composition, etc., the bottom-up approach is extensively used compared to the top-down method for preparing ZnO 2D nanosheets. This review presents a comprehensive study on designing and developing 2D ZnO nanomaterials, followed by accenting its potential applications. To begin with, various synthetic strategies and attributes of ZnO 2D nanosheets are discussed, followed by focusing on methodologies and reaction mechanisms. Then, their deliberation toward batteries, supercapacitors, electronics/optoelectronics, photocatalysis, sensing, and piezoelectronic platforms are further discussed. Finally, the challenges and future opportunities are featured based on its current development.
Collapse
Affiliation(s)
- Sayali Ashok Patil
- Centre for Nano and Material Science, Jain (Deemed-to-be University), Ramanagra, Bengaluru, Karnataka, 562112, India
| | - Pallavi Bhaktapralhad Jagdale
- Centre for Nano and Material Science, Jain (Deemed-to-be University), Ramanagra, Bengaluru, Karnataka, 562112, India
| | - Ashish Singh
- R&D, Technology and Innovation, Merck- Living Innovation, Sigma Aldrich Chemicals Pvt. Ltd., #12, Bommasandra- Jigni Link Road, Bengaluru, Karnataka, 560100, India
| | - Ravindra Vikram Singh
- R&D, Technology and Innovation, Merck- Living Innovation, Sigma Aldrich Chemicals Pvt. Ltd., #12, Bommasandra- Jigni Link Road, Bengaluru, Karnataka, 560100, India
| | - Ziyauddin Khan
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
| | - Akshaya Kumar Samal
- Centre for Nano and Material Science, Jain (Deemed-to-be University), Ramanagra, Bengaluru, Karnataka, 562112, India
| | - Manav Saxena
- Centre for Nano and Material Science, Jain (Deemed-to-be University), Ramanagra, Bengaluru, Karnataka, 562112, India
| |
Collapse
|
2
|
Core-shell structured Fe 2O 3/CeO 2@MnO 2 microspheres with abundant surface oxygen for sensitive solid-phase microextraction of polycyclic aromatic hydrocarbons from water. Mikrochim Acta 2021; 188:337. [PMID: 34510313 DOI: 10.1007/s00604-021-05004-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/24/2021] [Indexed: 12/14/2022]
Abstract
Core-shell structured Fe2O3/CeO2@MnO2 microspheres were fabricated and used as solid-phase microextraction coating for determination of polycyclic aromatic hydrocarbons (PAHs) in water samples. XPS spectra demonstrated the generation of abundant surface oxygen on Fe2O3/CeO2@MnO2 microspheres, which provided binding sites for enhancement of analyte extraction. Under optimized conditions, the proposed method presented good linearity in the concentration range 0.04-100 ng mL-1, with low limits of detection varying from 0.38 to 3.57 ng L-1 for eight PAHs. Relative standard deviations for a single fiber and five batches of fibers were in the ranges of 4.1-8.2% and 7.1-11.4%, respectively. The proposed method was successfully used for determination of PAHs in real river water samples with recoveries ranging from 87.1 to 115.9%. The proposed method using as-prepared Fe2O3/CeO2@MnO2 microspheres as SPME coating exhibit significant potential for real sample analysis due to its excellent reproducibility, high sensitivity, and good linearity.
Collapse
|