1
|
Fei SF, Hou C, Jia F. Effects of salidroside on atherosclerosis: potential contribution of gut microbiota. Front Pharmacol 2024; 15:1400981. [PMID: 39092226 PMCID: PMC11292615 DOI: 10.3389/fphar.2024.1400981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Much research describes gut microbiota in atherosclerotic cardiovascular diseases (ASCVD) for that the composition of the intestinal microbiome or its metabolites can directly participate in the development of endothelial dysfunction, atherosclerosis and its adverse complications. Salidroside, a natural phenylpropane glycoside, exhibits promising biological activity against the progression of ASCVD. Recent studies suggested that the gut microbiota played a crucial role in mediating the diverse beneficial effects of salidroside on health. Here, we describe the protective effects of salidroside against the progression of atherosclerosis. Salidroside regulates the abundance of gut microbiotas and gut microbe-dependent metabolites. Moreover, salidroside improves intestinal barrier function and maintains intestinal epithelial barrier function integrity. In addition, salidroside attenuates the inflammatory responses exacerbated by gut microbiota disturbance. This review delves into how salidroside functions to ameliorate atherosclerosis by focusing on its interaction with gut microbiota, uncovering the potential roles of gut microbiota in the diverse biological impacts of salidroside.
Collapse
Affiliation(s)
| | | | - Fang Jia
- Department of Cardiovascular Medicine, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
2
|
Song Y, Song Q, Liu W, Li J, Tu P. High-confidence structural identification of metabolites relying on tandem mass spectrometry through isomeric identification: A tutorial. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
3
|
Guan P, Liu W, Cao Y, Tang H, Huo H, Wan JB, Qiao X, Tu P, Li J, Song Y. Full Collision Energy Ramp-MS 2 Spectrum in Structural Analysis Relying on MS/MS. Anal Chem 2021; 93:15381-15389. [PMID: 34775745 DOI: 10.1021/acs.analchem.1c03127] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Albeit frequently being overlooked, MS2 spectrum variation against collision energy (CE) implies auxiliary structural clues for m/z values. Online energy-resolved MS (ER-MS) provides the opportunity to acquire the trajectory of ion intensity against CE for any fragment ion of interest, thus exactly offering the desired momentum to empower the conventional MS2 spectrum at a certain CE forward to a full-CE ramp MS2 spectrum (FCER-MS2). Efforts were made here to construct an FCER-MS2 spectrum and to evaluate its potential toward structural analysis. Flavonoids were employed as a proof of concept. MS2 spectra of 76 compounds were recorded by LC-Q-Exactive-MS, and online ER-MS was subsequently programmed using LC-Qtrap-MS to build a breakdown graph for each obvious fragment ion. After defining the greatest value amongst all regressive apices as 100%, the normalized breakdown graphs comprised an FCER-MS2 spectrum for each compound. The FCER-MS2 spectrum contained the MS2 spectrum at any CE as well as optimal CE (OCE) and maximal relative ion intensity (RIImax) of each fragment ion. Except the pronounced isomeric discrimination potential, either OCE or RIImax reflected certain structural properties, such as aglycone, glycosidic bond, and hydroxy, methoxy, and glycosyl substituents. These rules were subsequently applied for flavonoid-focused characterization of a famous herbal medicine, namely Scutellariae Radix, and high-level structural annotation was accomplished for 75 flavonoids. Above all, the FCER-MS2 spectrum includes m/z, OCEs, and RIImax features, thus facilitating confidence-advanced structural analysis.
Collapse
Affiliation(s)
- Pengwei Guan
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, East Road of North 3rd Ring, Chaoyang District, Beijing 100029, China
| | - Wenjing Liu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, East Road of North 3rd Ring, Chaoyang District, Beijing 100029, China
| | - Yan Cao
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, East Road of North 3rd Ring, Chaoyang District, Beijing 100029, China
| | - Huiting Tang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, East Road of North 3rd Ring, Chaoyang District, Beijing 100029, China
| | - Huixia Huo
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, East Road of North 3rd Ring, Chaoyang District, Beijing 100029, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa 999078, Macao
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, East Road of North 3rd Ring, Chaoyang District, Beijing 100029, China
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, East Road of North 3rd Ring, Chaoyang District, Beijing 100029, China
| | - Yuelin Song
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, East Road of North 3rd Ring, Chaoyang District, Beijing 100029, China
| |
Collapse
|
4
|
Zhang P, Jiang J, Zhang K, Liu W, Tu P, Li J, Song Y, Zheng J, Tang L. Shotgun chemome characterization of Artemisia rupestris L. Using direct infusion-MS/MS ALL. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1176:122735. [PMID: 34020402 DOI: 10.1016/j.jchromb.2021.122735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/02/2021] [Accepted: 04/21/2021] [Indexed: 11/26/2022]
Abstract
In comparison of liquid chromatography, direct infusion is a superior choice to achieve high-throughput measurements. The specificity and selectivity of tandem mass spectrometry (MS/MS) actually result in a so-called MS separation potential when chemical characterization of herbal medicines. Here, a MS/MSALL program was introduced to promote DI-MS/MS to be an eligible tool for shotgun chemome characterization of Artemisia rupestris L. that is currently drawing worldwide interests because of the promising antiviral activity. After MS1 spectral acquisition for the crude extract, the gas phase fractionation concept enabled the precursor ion cohort sequentially entered the collision cell with a stepped unit mass window (step-size as 1 Da) to generate MS2 spectra, thus generating a unique property integrating the advantages of both data-dependent and data-independent acquisition manners. Even though being free of chromatographic separation, spectrometric separations were accomplished for by MS/MSALL program unless the components shared identical nominal molecular weights. Extensive efforts such as the correlations of MS1 signals with MS2 spectra, structural annotations of fragment ion species, information retrieval in some accessible databases, and referring to the literature data, were devoted for chemical characterization, and as a result, 44 compounds, in total, were structurally identified from 50% aqueous methanol exact of A. rupestris, including 8 caffeoyl quinic acid derivatives, 13 flavonoids, 15 monomeric and dimeric sesquiterpenoids, 4 fatty acids, 2 penylpropanoids, along with 2 other compounds. However, isomers were assigned as an isomeric mixture because their precursor ions always co-existed in a single mass window. Above all, DI-MS/MSALL provides an alternative tool for chemome characterization of herbal medicines, in particular when the great measurement workload for a large sample cohort, attributing to the high-throughput advantage.
Collapse
Affiliation(s)
- Peijie Zhang
- Key Laboratory of Ethnomedicine (Minzu University of China) Ministry of Education, School of Pharmacy, Minzu University of China, Beijing 100081, China; Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jun Jiang
- Shandong Institute for Food and Drug Control, Jinan 250101, China
| | - Ke Zhang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wenjing Liu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuelin Song
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jiao Zheng
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Li Tang
- Key Laboratory of Ethnomedicine (Minzu University of China) Ministry of Education, School of Pharmacy, Minzu University of China, Beijing 100081, China.
| |
Collapse
|