1
|
Nishiwaki K, Morikawa Y, Suzuki S, Shiomi K, Nakanishi I. Spectral and theoretical analysis of derivatives of 1,2,3,3-tetramethyl-3H-indolium iodide (TMI), a highly selective derivatization reagent of cyanide, and their utility for the analysis of cyanide concentrations in beverages. ANAL SCI 2023; 39:1763-1770. [PMID: 37318679 DOI: 10.1007/s44211-023-00386-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
We develop a specific derivatization gas chromatography-mass spectrometry (GC-MS) method for cyanide using 1,2,3,3-tetramethyl-3H-indium iodide as the derivatization reagent. The derivative compounds were synthesized and characterized using 1H nuclear magnetic resonance (NMR), 13C NMR, and Fourier transform infrared (FT-IR) spectroscopy. The high selectivity of this derivatization for cyanide is supported by calculations and activation energy comparisons. We applied this method to pure water, green tea, orange juice, coffee cafe au lait, and milk. Derivatization was performed by diluting 20 μL of sample solution with 0.1 M NaOH and adding 100 μL of saturated borax solution and 100 μL of 8 mM TMI solution, each drink was completed in 5 min at room temperature, and selected ion (m/z = 200) monitoring analysis was linear (R2 > 0.998) at 0.15 to 15 μM, with detection limits of 4-11 μM were shown. This method is expected to be widely used in forensic toxicology analysis and can be applied to beverages, which are forensically important field samples.
Collapse
Affiliation(s)
- Keiji Nishiwaki
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka, 577-8502, Japan.
| | - Yasuhiro Morikawa
- Forensic Science Laboratory, Kyoto Prefectural Police H.Q, 85-3, Yabunouchi-cho, Kamigyo-ku, Kyoto, 602-8550, Japan.
| | - Shigeo Suzuki
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
- Antiaging Center, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| | - Kazutaka Shiomi
- Forensic Science Laboratory, Kyoto Prefectural Police H.Q, 85-3, Yabunouchi-cho, Kamigyo-ku, Kyoto, 602-8550, Japan
| | - Isao Nakanishi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka, 577-8502, Japan
- Antiaging Center, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka, 577-8502, Japan
| |
Collapse
|
2
|
Determination of cyanide in blood by GC-MS using a new high selectivity derivatization reagent 1,2,3,3-tetramethyl-3H-indolium iodide. Forensic Toxicol 2022; 40:393-399. [PMID: 36454401 DOI: 10.1007/s11419-021-00610-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/22/2021] [Indexed: 01/26/2023]
|
3
|
Silpcharu K, Soonthonhut S, Sukwattanasinitt M, Rashatasakhon P. Fluorescent Sensor for Copper(II) and Cyanide Ions via the Complexation-Decomplexation Mechanism with Di(bissulfonamido)spirobifluorene. ACS OMEGA 2021; 6:16696-16703. [PMID: 34235342 PMCID: PMC8246698 DOI: 10.1021/acsomega.1c02744] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/10/2021] [Indexed: 05/27/2023]
Abstract
A novel spirobifluorene derivative bearing two bissulfonamido groups is successfully synthesized by Sonogashira coupling. This compound exhibits a strong fluorescence quenching by Cu(II) ion in a 50% mixture between acetonitrile and 20 mM pH 7.0 N-(2-hydroxyethyl)piperazine-N'-ethanesulfonic acid (HEPES) buffer with a detection limit of 98.2 nM. However, this sensor also shows ratiometric signal shifts from blue to yellow in the presence of Zn(II), Pb(II), and Hg(II) ions. The static quenching mechanism is verified by the signal reversibility using ethylenediaminetetraacetic acid (EDTA) and the Stern-Volmer plots at varying temperatures. The Cu(II)-spirobifluorene complex shows a highly selective fluorescence enhancement upon the addition of CN- ion with the detection limit of 390 nM. The application of this complex for quantitative analysis of spiked CN- ion in real water samples resulted in good recoveries.
Collapse
Affiliation(s)
- Komthep Silpcharu
- Department
of Chemistry, Faculty of Science, Chulalongkorn
University, Bangkok 10330, Thailand
| | - Siraporn Soonthonhut
- Department
of Chemistry, Faculty of Science, Chulalongkorn
University, Bangkok 10330, Thailand
| | - Mongkol Sukwattanasinitt
- Department
of Chemistry, Faculty of Science, Chulalongkorn
University, Bangkok 10330, Thailand
- Nanotec-CU
Center of Excellence on Food and Agriculture, Department of Chemistry,
Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Paitoon Rashatasakhon
- Department
of Chemistry, Faculty of Science, Chulalongkorn
University, Bangkok 10330, Thailand
- Nanotec-CU
Center of Excellence on Food and Agriculture, Department of Chemistry,
Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|