1
|
Johari B, Tavangar-Roosta S, Gharbavi M, Sharafi A, Kaboli S, Rezaeejam H. Suppress the cell growth of cancer stem-like cells (NTERA-2) using Sox2-Oct4 decoy oligodeoxynucleotide-encapsulated niosomes-zinc hybrid nanocarriers under X-irradiation. Heliyon 2024; 10:e34096. [PMID: 39071677 PMCID: PMC11277410 DOI: 10.1016/j.heliyon.2024.e34096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024] Open
Abstract
Sox2 and Oct4 dysregulations could significantly increase in the cancer stem cell (CSC) population in some cancer cells and resistance to common treatments. In this study, the synergistic effects of Sox2-Oct4 decoy oligodeoxynucleotides-encapsulated Niosomes-zinc hybrid nanocarriers along with X-irradiation conditions as a combinational therapy tool were investigated in the treatment of cancer-like stem cells (NTERA-2). The NTERA-2 cell line known as a cancer-like stem cell line was used in this investigation. Sox2-Oct4 decoy oligodeoxynucleotides were designed based on the sequence of the Sox2 promoter and synthesized. Physicochemical characteristics of ODNs-encapsulated niosomes-zinc hybrid nanocarriers (NISM@BSA-DEC-Zn) investigated with FT-IR, DLS, FESEM, and ODNs release kinetic estimation assays. Further investigations such as hemolysis, uptake, cell viability, apoptosis, cell cycle, and scratch repair tests were performed. All the above assays were completed with and without X-ray exposure conditions (fractionated 2Gy). Physicochemical characteristics results showed that the Niosomes-Zn nanocarriers were successfully synthesized. NISM@BSA-DEC-Zn was efficiently taken up by NTERA-2 cells and significantly inhibited cell growth, increased apoptosis, and reduced cell migration in both conditions (with and without X-ray exposure). Furthermore, NISM@BSA-DEC-Zn treatment resulted in G1 and G2/M cell cycle arrest without and with X-irradiation, respectively. The prepared nanocarrier system can be a promising tool for drug delivery in cancer treatment. Decoy ODN strategy along with zinc nanoparticles could increase the sensitivity of cancer cells toward irradiation, which has the potential for combinational cancer therapies.
Collapse
Affiliation(s)
- Behrooz Johari
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Shabnam Tavangar-Roosta
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mahmoud Gharbavi
- Nanotechnology Research Center, Medical Basic Scinces Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Pain Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Sharafi
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Saeed Kaboli
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hamed Rezaeejam
- Department of Radiology Technology, School of Allied Medical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
2
|
Asadi N, Gharbavi M, Rezaeejam H, Farajollahi A, Johari B. Zinc nanoparticles coated with doxorubicin-conjugated alginate as a radiation sensitizer in triple-negative breast cancer cells. Int J Pharm 2024; 659:124285. [PMID: 38821433 DOI: 10.1016/j.ijpharm.2024.124285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/25/2024] [Accepted: 05/26/2024] [Indexed: 06/02/2024]
Abstract
The main treatment modalities for breast cancer include surgery, chemotherapy, and radiotherapy, and each treatment will bring different side effects. Design and synthesizing a novel nanostructure for chemo-radiotherapy has been proposed as an effective method in consideration to enhance the drug efficiency as well as improve the effect of radiotherapy. This study aimed to synthesize zinc nanoparticles (ZnNPs) coated with alginate conjugated with Doxorubicin (Dox) drug and investigate its effects along with X-irradiation on MDA-MB-231 triple-negative breast cancer cell line. ZnNPs coated with alginate were synthesized and conjugated to Dox by covalent bonding and characterized using various physicochemical tests. A hemolysis test was used to assess blood biocompatibility. The radiosensitization properties and anti-cancer effects of the synthesized nanostructures were tested by cell uptake, cell viability, apoptosis, cell cycle, and scratch assays with and without radiation exposure. The physicochemical characterization results showed that the synthesis of nanostructures was successfully carried out. The obtained results from the cell uptake assay showed the effective absorption of nanostructures by the cells. The Zn@Alg-Dox NPs significantly reduced cell growth, increased apoptosis, inhibited cell migration, and led to the arrest of different cell cycle phases in both conditions with and without X-ray exposure. Coating ZnNPs with alginate and Doxorubicin conjugation leads to an increase the radiation sensitivity in radiotherapy as well as therapeutic efficiency. Therefore, Zn@Alg-Dox NPs can be used as radiosensitizing nanomedicine for in vivo studies in the future.
Collapse
Affiliation(s)
- Niloofar Asadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Physics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Gharbavi
- Nanotechnology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Anesthesiology, School of Medicine, Pain Research Center, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Iran
| | - Hamed Rezaeejam
- Department of Radiation Oncology, Vali-e-Asr Hospital, Zanjan University of Medical Sciences, Zanjan, Iran; Department of Radiology, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Alireza Farajollahi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Physics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Radio-oncology Department, Shihid Madani University Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Behrooz Johari
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran; Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
3
|
Zou YM, Li RT, Yu L, Huang T, Peng J, Meng W, Sun B, Zhang WH, Jiang ZH, Chen J, Chen JX. Reprogramming of the tumor microenvironment using a PCN-224@IrNCs/D-Arg nanoplatform for the synergistic PDT, NO, and radiosensitization therapy of breast cancer and improving anti-tumor immunity. NANOSCALE 2023. [PMID: 37318099 DOI: 10.1039/d3nr01050c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The low X-ray attenuation coefficient of tumor soft tissue and the hypoxic tumor microenvironment (TME) during radiation therapy (RT) of breast cancer result in RT resistance and thus reduced therapeutic efficacy. In addition, immunosuppression induced by the TME severely limits the antitumor immunity of radiation therapy. In this paper, we propose a PCN-224@IrNCs/D-Arg nanoplatform for the synergistic radiosensitization, photodynamic, and NO therapy of breast cancer that also boosts antitumor immunity (PCN = porous coordination network, IrNCs = iridium nanocrystals, D-Arg = D-arginine). The local tumors can be selectively ablated via reprogramming the tumor microenvironment (TME), photodynamic therapy (PDT) and NO therapy, and the presence of the high-Z element Ir that sensitizes radiotherapy. The synergistic execution of these treatment modalities also resulted in adapted antitumor immune response. The intrinsic immunomodulatory effects of the nanoplatform also repolarize macrophages toward the M1 phenotype and induce dendritic cell maturation, activating antitumor T cells to induce immunogenic cell death as demonstrated in vitro and in vivo. The nanocomposite design reported herein represents a new regimen for the treatment of breast cancer through TME reprogramming to exert a synergistic effect for effective cancer therapy and antitumor immunity.
Collapse
Affiliation(s)
- Yi-Ming Zou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China.
| | - Rong-Tian Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China.
| | - Lei Yu
- Department of Dermatology, Zhujiang Hospital of Southern Medical University, No. 253 Gongye Avenue, Guangzhou 510091, People's Republic of China
| | - Ting Huang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China.
| | - Jian Peng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China.
| | - Wei Meng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China.
| | - Bin Sun
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China.
| | - Wen-Hua Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Zhi-Hong Jiang
- Macau University of Science and Technology, Taipa, Macau 999078, People's Republic of China
| | - Jun Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China.
| | - Jin-Xiang Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China.
| |
Collapse
|
4
|
Nosrati H, Salehiabar M, Charmi J, Yaray K, Ghaffarlou M, Balcioglu E, Ertas YN. Enhanced In Vivo Radiotherapy of Breast Cancer Using Gadolinium Oxide and Gold Hybrid Nanoparticles. ACS APPLIED BIO MATERIALS 2023; 6:784-792. [PMID: 36693820 PMCID: PMC9945098 DOI: 10.1021/acsabm.2c00965] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023]
Abstract
Radiation therapy has demonstrated promising effectiveness against several types of cancers. X-ray radiation therapy can be made further effective by utilizing nanoparticles of high-atomic-number (high-Z) materials that act as radiosensitizers. Here, in purpose of maximizing the radiation therapy within tumors, bovine serum albumin capped gadolinium oxide and gold nanoparticles (Gd2O3@BSA-Au NPs) are developed as a bimetallic radiosensitizer. In this study, we incorporate two high-Z-based nanoparticles, Au and Gd, in a single nanoplatform. The radiosensitizing ability of the nanoparticles was assessed with a series of in vitro tests, following evaluation in vivo in a breast cancer murine model. Enhanced tumor suppression is observed in the group that received radiation after administration of Gd2O3@BSA-Au NPs. As a result, cancer therapy efficacy is significantly improved by applying Gd2O3@BSA-Au NPs under X-ray irradiation, as evidenced by studies evaluating cell viability, proliferation, reactive oxygen species production, and in vivo anti-tumor effect.
Collapse
Affiliation(s)
- Hamed Nosrati
- ERNAM—Nanotechnology
Research and Application Center, Erciyes
University, Kayseri39039, Türkiye
| | - Marziyeh Salehiabar
- ERNAM—Nanotechnology
Research and Application Center, Erciyes
University, Kayseri39039, Türkiye
| | - Jalil Charmi
- ERNAM—Nanotechnology
Research and Application Center, Erciyes
University, Kayseri39039, Türkiye
| | - Kadir Yaray
- Department
of Radiation Oncology, Faculty of Medicine, Erciyes University, Kayseri39039, Türkiye
| | | | - Esra Balcioglu
- Department
of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri39039, Türkiye
| | - Yavuz Nuri Ertas
- ERNAM—Nanotechnology
Research and Application Center, Erciyes
University, Kayseri39039, Türkiye
- Department
of Biomedical Engineering, Erciyes University, Kayseri39039, Türkiye
- UNAM−National
Nanotechnology Research Center, Bilkent
University, Ankara06800, Türkiye
| |
Collapse
|
5
|
Samani RK, Maghsoudinia F, Mehradnia F, Hejazi SH, Saeb M, Sobhani T, Farahbakhsh Z, Mehrgardi MA, Tavakoli MB. Ultrasound-guided chemoradiotherapy of breast cancer using smart methotrexate-loaded perfluorohexane nanodroplets. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 48:102643. [PMID: 36584739 DOI: 10.1016/j.nano.2022.102643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 12/29/2022]
Abstract
Chemoradiotherapy with controlled-release nanocarriers such as sono-sensitive nanodroplets (NDs) can enhance the anticancer activity of chemotherapy medicines and reduces normal tissue side effects. In this study, folic acid-functionalized methotrexate-loaded perfluorohexane NDs with alginate shell (FA-MTX/PFH@alginate NDs) were synthesized, characterized, and their potential for ultrasound-guided chemoradiotherapy of breast cancer was investigated in vitro and in vivo. The cancer cell (4T1) viabilities and surviving fractions after NDs and ultrasound treatments were significantly decreased. However, this reduction was much more significant for ultrasound in combination with X-ray irradiation. The in vitro and in vivo results confirmed that MTX-loaded NDs are highly biocompatible and they have no significant hemolytic activity and organ toxicity. Furthermore, the in vivo results indicated that the FA-MTX/PFH@alginate NDs were accumulated selectively in the tumor region. In conclusion, FA-functionalized MTX/PFH@alginate NDs have a great theranostic performance for ultrasound-controlled drug delivery in combination with radiotherapy of breast cancer.
Collapse
Affiliation(s)
- Roghayeh Kamran Samani
- Department of Medical Physics and Radiology, School of Allied Medical Sciences, Shahrekord University of Medical Sciences, Shahrekord, Iran; Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Fatemeh Maghsoudinia
- Department of Medical Imaging and Radiation Sciences, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Mehradnia
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, NG7 2RD, UK
| | - Seyed Hossein Hejazi
- Skin Diseases and Leishmaniasis Research Center, Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Mohsen Saeb
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Tayebe Sobhani
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Zohreh Farahbakhsh
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoud A Mehrgardi
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran.
| | - Mohamad Bagher Tavakoli
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran.
| |
Collapse
|
6
|
Radiolabeled methotrexate loaded chitosan nanoparticles as imaging probe for breast cancer: Biodistribution in tumor-bearing mice. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
7
|
Wang K, Jalil AT, Saleh MM, Talaei S, Wang L. Glutathione (GSH) conjugated Bi2S3 NPs as a promising radiosensitizer against glioblastoma cancer cells. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02592-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
BPR0C261, An Analogous of Microtubule Disrupting Agent D-24851 Enhances the Radiosensitivity of Human Non-Small Cell Lung Cancer Cells via p53-Dependent and p53-Independent Pathways. Int J Mol Sci 2022; 23:ijms232214083. [PMID: 36430560 PMCID: PMC9692308 DOI: 10.3390/ijms232214083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
(1) Destabilization of microtubule dynamics is a primary strategy to inhibit fast growing tumor cells. The low cytotoxic derivative of microtubule inhibitor D-24851, named BPR0C261 exhibits antitumor activity via oral administration. In this study, we investigated if BPR0C261 could modulate the radiation response of human non-small cell lung cancer (NSCLC) cells with or without p53 expression. (2) Different doses of BPR0C261 was used to treat human NSCLC A549 (p53+/+) cells and H1299 (p53-/-) cells. The cytotoxicity, radiosensitivity, cell cycle distribution, DNA damage, and protein expression were evaluated using an MTT assay, a colony formation assay, flow cytometry, a comet assay, and an immunoblotting analysis, respectively. (3) BPR0C261 showed a dose-dependent cytotoxicity on A549 cells and H1299 cells with IC50 at 0.38 μM and 0.86 μM, respectively. BPR0C261 also induced maximum G2/M phase arrest and apoptosis in both cell lines after 24 h of treatment with a dose-dependent manner. The colony formation analysis demonstrated that a combination of low concentration of BPR0C261 and X-rays caused a synergistic radiosensitizing effect on NSCLC cells. Additionally, we found that a low concentration of BPR0C261 was sufficient to induce DNA damage in these cells, and it increased the level of DNA damage induced by a fractionation radiation dose (2 Gy) of conventional radiotherapy. Furthermore, the p53 protein level of A549 cell line was upregulated by BPR0C261. On the other hand, the expression of PTEN tumor suppressor was found to be upregulated in H1299 cells but not in A549 cells under the same treatment. Although radiation could not induce PTEN in H1299 cells, a combination of low concentration of BPR0C261 and radiation could reverse this situation. (4) BPR0C261 exhibits specific anticancer effects on NSCLC cells by the enhancement of DNA damage and radiosensitivity with p53-dependent and p53-independent/PTEN-dependent manners. The combination of radiation and BPR0C261 may provide an important strategy for the improvement of radiotherapeutic treatment.
Collapse
|
9
|
Nosrati H, Ghaffarlou M, Salehiabar M, Mousazadeh N, Abhari F, Barsbay M, Ertas YN, Rashidzadeh H, Mohammadi A, Nasehi L, Rezaeejam H, Davaran S, Ramazani A, Conde J, Danafar H. Magnetite and bismuth sulfide Janus heterostructures as radiosensitizers for in vivo enhanced radiotherapy in breast cancer. BIOMATERIALS ADVANCES 2022; 140:213090. [PMID: 36027669 DOI: 10.1016/j.bioadv.2022.213090] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Janus heterostructures based on bimetallic nanoparticles have emerged as effective radiosensitizers owing to their radiosensitization capabilities in cancer cells. In this context, this study aims at developing a novel bimetallic nanoradiosensitizer, Bi2S3-Fe3O4, to enhance tumor accumulation and promote radiation-induced DNA damage while reducing adverse effects. Due to the presence of both iron oxide and bismuth sulfide metallic nanoparticles in these newly developed nanoparticle, strong radiosensitizing capacity is anticipated through the generation of reactive oxygen species (ROS) to induce DNA damage under X-Ray irradiation. To improve blood circulation time, biocompatibility, colloidal stability, and tuning surface functionalization, the surface of Bi2S3-Fe3O4 bimetallic nanoparticles was coated with bovine serum albumin (BSA). Moreover, to achieve higher cellular uptake and efficient tumor site specificity, folic acid (FA) as a targeting moiety was conjugated onto the bimetallic nanoparticles, termed Bi2S3@BSA-Fe3O4-FA. Biocompatibility, safety, radiation-induced DNA damage by ROS activation and generation, and radiosensitizing ability were confirmed via in vitro and in vivo assays. The administration of Bi2S3@BSA-Fe3O4-FA in 4T1 breast cancer murine model upon X-ray radiation revealed highly effective tumor eradication without causing any mortality or severe toxicity in healthy tissues. These findings offer compelling evidence for the potential capability of Bi2S3@BSA-Fe3O4-FA as an ideal nanoparticle for radiation-induced cancer therapy and open interesting avenues of future research in this area.
Collapse
Affiliation(s)
- Hamed Nosrati
- Department of Biotechnology, Research Institute of Modern Biological Techniques (RIMBT), University of Zanjan, Zanjan 45371-38791, Iran
| | | | - Marziyeh Salehiabar
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey
| | - Navid Mousazadeh
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Fatemeh Abhari
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Murat Barsbay
- Hacettepe University, Department of Chemistry, Beytepe, Ankara 06800, Turkey
| | - Yavuz Nuri Ertas
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey; Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey
| | - Hamid Rashidzadeh
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey
| | - Ali Mohammadi
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Leila Nasehi
- Department of Medical Laboratory, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hamed Rezaeejam
- Department of Radiology, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan 45139-56184, Iran
| | - Soodabeh Davaran
- Drug Applied Research Center, Tabriz University of Medical Sciences, P.O. Box 51656-65811, Tabriz, Iran
| | - Ali Ramazani
- Department of Biotechnology, Research Institute of Modern Biological Techniques (RIMBT), University of Zanjan, Zanjan 45371-38791, Iran; Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran.
| | - João Conde
- ToxOmics, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal.
| | - Hossein Danafar
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey.
| |
Collapse
|
10
|
Javani S, Barsbay M, Ghaffarlou M, Mousazadeh N, Mohammadi A, Mozafari F, Rezaeejam H, Nasehi L, Nosrati H, Kavetskyy T, Danafar H. Metronidazole conjugated bismuth sulfide nanoparticles for enhanced X-ray radiation therapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Mousazadeh N, Gharbavi M, Rashidzadeh H, Nosrati H, Danafar H, Johari B. Anticancer evaluation of methotrexate and curcumin coencapsulated niosomes against colorectal cancer cell line. Nanomedicine (Lond) 2022; 17:201-217. [PMID: 35037483 DOI: 10.2217/nnm-2021-0334] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: The aim of the present investigation was to develop niosomes containing both curcumin (CUR) and methotrexate (MTX). Also, the combinational effect of CUR and MTX in both free and niosomal forms on growth inhibition potential and induction of apoptosis in the HCT-116 cell line were exploited. Materials & methods: Niosomes were prepared by the thin-film hydration method and their physicochemical properties were determined by various techniques. Cellular uptake, cell apoptosis, wound healing and MTT assay were conducted to ascertain niosomes' feasibility for cancer therapy. Results: The combination of CUR and MTX in niosomal formulation showed more toxicity than their combination in free form. Conclusion: The nanocarrier-based approach was effective for the codelivery of CUR and MTX against cancer cells in vitro.
Collapse
Affiliation(s)
- Navid Mousazadeh
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.,Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mahmoud Gharbavi
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.,Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hamid Rashidzadeh
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.,Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hamed Nosrati
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.,Joint Ukraine-Azerbaijan International Research & Education Center of Nanobiotechnology & Functional Nanosystems, Drohobych, Ukraine, Baku, Azerbaijan
| | - Hossein Danafar
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.,Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Behrooz Johari
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.,Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
12
|
Hu H, Zheng S, Hou M, Zhu K, Chen C, Wu Z, Qi L, Ren Y, Wu B, Xu Y, Yan C, Zhao B. Functionalized Au@Cu-Sb-S Nanoparticles for Spectral CT/Photoacoustic Imaging-Guided Synergetic Photo-Radiotherapy in Breast Cancer. Int J Nanomedicine 2022; 17:395-407. [PMID: 35115774 PMCID: PMC8800589 DOI: 10.2147/ijn.s338085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/06/2022] [Indexed: 11/23/2022] Open
Abstract
Background Radiotherapy (RT) is clinically well-established cancer treatment. However, radioresistance remains a significant issue associated with failure of RT. Phototherapy-induced radiosensitization has recently attracted attention in translational cancer research. Methods Cu-Sb-S nanoparticles (NPs) coated with ultra-small Au nanocrystals (Au@Cu-Sb-S) were synthesized and characterized. The biosafety profiles, absorption of near-infrared (NIR) laser and radiation-enhancing effect of the NPs were evaluated. In vitro and in vivo spectral computed tomography (CT) imaging and photoacoustic (PA) imaging were performed in 4T1 breast cancer-bearing mice. The synergetic radio-phototherapy was assessed by in vivo tumor inhibition studies. Results Au@Cu-Sb-S NPs were prepared by in situ growth of Au NCs on the surface of Cu-Sb-S NPs. The cell viability experiments showed that the combination of Au@Cu-Sb-S+NIR+RT was significantly more cytotoxic to tumor cells than the other treatments at concentrations above 25 ppm Sb. In vitro and in vivo spectral CT imaging demonstrated that the X-ray attenuation ability of Au@Cu-Sb-S NPs was superior to that of the clinically used Iodine, particularly at lower KeV levels. Au@Cu-Sb-S NPs showed a concentration-dependent and remarkable PA signal brightening effect. In vivo tumor inhibition studies showed that the prepared Au@Cu-Sb-S NPs significantly suppressed tumor growth in 4T1 breast cancer-bearing mice treated with NIR laser irradiation and an intermediate X-ray dose (4 Gy). Conclusion These results indicate that Au@Cu-Sb-S integrated with spectral CT, PA imaging, and phototherapy-enhanced radiosensitization is a promising multifunctional theranostic nanoplatform for clinical applications.
Collapse
Affiliation(s)
- Honglei Hu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Shuting Zheng
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Meirong Hou
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Kai Zhu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Chuyao Chen
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Zede Wu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Li Qi
- Guangdong Provincial Key Laboratory of Medical Image Processing, Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Yunyan Ren
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Bin Wu
- Institute of Respiratory Diseases, Respiratory Department, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Yikai Xu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Chenggong Yan
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Bingxia Zhao
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People’s Republic of China
- Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, People’s Republic of China
- Correspondence: Bingxia Zhao; Yikai Xu, Tel +86 20 61647272; +86 20 62787333, Email ;
| |
Collapse
|
13
|
Khalaf MM, Hassanein EHM, Shalkami AGS, Hemeida RAM, Mohamed WR. Diallyl Disulfide Attenuates Methotrexate-Induced Hepatic Oxidative Injury, Inflammation and Apoptosis and Enhances its Anti-Tumor Activity. Curr Mol Pharmacol 2022; 15:213-226. [PMID: 34042041 DOI: 10.2174/1874467214666210525153111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/03/2021] [Accepted: 02/08/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Methotrexate (MTX) is used potently for a wide range of diseases. However, hepatic intoxication by MTX hinders its clinical use. OBJECTIVES The present study was conducted to investigate the diallyl disulfide (DADS) ability to ameliorate MTX-induced hepatotoxicity. METHODS Thirty-two rats were randomly divided into four groups: normal control, DADS (50 mg/kg/day, orally), MTX (single i.p. injection of 20 mg/kg) and DADS+MTX. Liver function biomarkers, histopathological examinations, oxidative stress, inflammation, and apoptosis biomarkers were investigated. Besides, an in vitro cytotoxic activity study was conducted to explore the modulatory effects of DADS on MTX cytotoxic activity using Caco-2, MCF-7, and HepG2 cells. RESULTS DADS significantly reduced the increased serum activities of ALT, AST, ALP, and LDH. These results were confirmed by the alleviation of liver histopathological changes. It restored the decreased GSH content and SOD activity, while significantly decreased MTX-induced elevations in both MDA and NO2 - contents. The hepatoprotective effects were mechanistically mediated through the up-regulation of hepatic Nrf-2 and the down-regulation of Keap-1, P38MAPK, and NF- κB expression levels. In addition, an increase in Bcl-2 level with a decrease in the expression of both Bax and caspase-3 was observed. The in vitro study showed that DADS increased MTX antitumor efficacy. CONCLUSION DADS potently alleviated MTX-induced hepatotoxicity through the modulation of Keap-1/Nrf-2, P38MAPK/NF-κB and apoptosis signaling pathways and effectively enhanced the MTX cytotoxic effects, which could be promising for further clinical trials.
Collapse
Affiliation(s)
- Marwa M Khalaf
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef,Egypt
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut,Egypt
| | - Abdel-Gawad S Shalkami
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut,Egypt
| | - Ramadan A M Hemeida
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut,Egypt
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef,Egypt
| |
Collapse
|
14
|
Nosrati H, Baghdadchi Y, Abbasi R, Barsbay M, Ghaffarlou M, Abhari F, Mohammadi A, Kavetskyy T, Bochani S, Rezaeejam H, Davaran S, Danafar H. Iron oxide and gold bimetallic radiosensitizers for synchronous tumor chemoradiation therapy in 4T1 breast cancer murine model. J Mater Chem B 2021; 9:4510-4522. [PMID: 34027529 DOI: 10.1039/d0tb02561e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The development of highly integrated multifunctional nanomaterials with a superadditive therapeutic effect and good safety is an urgent but challenging task in cancer therapy research. The present study aims to design a nanoplatform that offers the opportunity to enhance antitumor activity while minimizing side effects. Given the Au-mediated X-ray radiation enhancement and the ability of Fe-based nanomaterials to create reactive oxygen species (ROS) and DNA damage, we anticipated that bimetallic Fe3O4-Au heterodimer would bring strong radiosensitizing capacity. Fe3O4-Au heterodimer surface was covered with bovine serum albumin (BSA) to achieve good surface functionality, stability and prolonged blood circulation. Folic acid (FA) moieties were added to the nanoformulation to increase tumor-homing, specificity and uptake. Finally, curcumin (CUR) was incorporated into the nanoparticle to function as a natural anticancer agent. The integration of all these components has yielded a single nanoplatform, Fe3O4-Au-BSA-FA-CUR, capable of successfully fulfilling the mission of superadditive cancer therapy to avoid the risks of organ removal surgery. The efficacy of the proposed nanoplatform was investigated in vitro and in vivo. High radiosensitizing ability, X-ray-induced ROS generation and DNA damage, and good biocompatibility were demonstrated through in vitro experiments. Also, the administration of Fe3O4-Au-BSA-FA-CUR with X-ray irradiation completely eradicated the tumor without any mortality and toxicity in healthy tissues in vivo. Our results highlight the potential of CUR-loaded Fe3O4-Au-BSA-FA heteronanostructure to enable synergistic localized radiochemotherapy and open up a new door to attractive possibilities that warrant further exploration.
Collapse
Affiliation(s)
- Hamed Nosrati
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran. and Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych, Ukraine, Baku, Azerbaijan and Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan 45139-56184, Iran
| | - Yasamin Baghdadchi
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Reza Abbasi
- Department of Physics, Faculty of Science, University of Zanjan, Zanjan, 45371-38791, Iran
| | - Murat Barsbay
- Hacettepe University, Department of Chemistry, Beytepe, Ankara 06800, Turkey
| | | | - Fatemeh Abhari
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Ali Mohammadi
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Taras Kavetskyy
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych, Ukraine, Baku, Azerbaijan and Department of Surface Engineering, The John Paul II Catholic University of Lublin, 20-950 Lublin, Poland and Drohobych Ivan Franko State Pedagogical University, 82100 Drohobych, Ukraine
| | - Shayesteh Bochani
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Hamed Rezaeejam
- Department of Radiology, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Soodabeh Davaran
- Drug Applied Research Center, Tabriz University of Medical Sciences, P.O. Box: 51656-65811, Tabriz, Iran
| | - Hossein Danafar
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran. and Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych, Ukraine, Baku, Azerbaijan and Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan 45139-56184, Iran
| |
Collapse
|
15
|
Unnikrishnan BS, Sen A, Preethi GU, Joseph MM, Maya S, Shiji R, Anusree KS, Sreelekha TT. Folic acid-appended galactoxyloglucan-capped iron oxide nanoparticles as a biocompatible nanotheranostic agent for tumor-targeted delivery of doxorubicin. Int J Biol Macromol 2020; 168:130-142. [PMID: 33278441 DOI: 10.1016/j.ijbiomac.2020.11.205] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/20/2020] [Accepted: 11/29/2020] [Indexed: 12/13/2022]
Abstract
Iron oxide nanoparticles (IONPs) are employed as MRI contrast agents and as effective drug delivery vehicles. However, the limited solubility and biodegradability of these nanoparticles need to be improved for safer biomedical applications. In an attempt to improve the bottlenecks associated with IONPs, the current study focuses on the synthesis of folic acid conjugated, galactoxyloglucan-iron oxide nanoparticles (FAPIONPs), for the loading and controlled release of the encapsulated chemotherapeutic agent doxorubicin (DOX). The as-designed DOX@FAPIONPs induced a dose-dependent increase in cytotoxicity in folate receptor-positive cells through a caspase-mediated programmed cell death pathway while bare DOX demonstrated a non-targeted toxicity profile. Using LC-MS/MS analysis, several major biological processes altered in treated cells, from which, cell cycle, cellular function and maintenance were the most affected. Detailed toxicity studies in healthy mice indicated the absence of any major side effects while bare drugs created substantial organ pathology. Gadolinium-based contrast agents have a risk of adverse effects, including nephrogenic systemic fibrosis overcome by the administration of DOX@FAPIONPs in xenograft mice model. Tumor-targeted biodistribution pattern with a favorable DOX pharmacokinetics will be the driving factor behind the appealing tumor reduction capacity and increased survival benefits demonstrated on solid tumor-bearing mice.
Collapse
Affiliation(s)
- B S Unnikrishnan
- Laboratory of Biopharmaceuticals and Nanomedicine, Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram 695011, Kerala, India
| | - Anitha Sen
- Radiodiagnosis Department, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram 695011, Kerala, India
| | - G U Preethi
- Laboratory of Biopharmaceuticals and Nanomedicine, Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram 695011, Kerala, India
| | - Manu M Joseph
- Chemical Sciences & Technology Division (CSTD), Organic Chemistry Section, CSIR- National Institute for Interdisciplinary Science & Technology (CSIR-NIIST), Thiruvananthapuram 695019, Kerala, India
| | - S Maya
- Laboratory of Biopharmaceuticals and Nanomedicine, Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram 695011, Kerala, India
| | - R Shiji
- Laboratory of Biopharmaceuticals and Nanomedicine, Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram 695011, Kerala, India
| | - K S Anusree
- Laboratory of Biopharmaceuticals and Nanomedicine, Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram 695011, Kerala, India
| | - T T Sreelekha
- Laboratory of Biopharmaceuticals and Nanomedicine, Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram 695011, Kerala, India.
| |
Collapse
|