1
|
Zhang Q, Huang Z, Jiang H, Wu M, Dong Z, Chen C, Chen F, Zhao G, Ma P. "Bamboo-like" strong and tough sodium alginate/polyacrylate hydrogel fiber with directional controlled release for wound healing promotion. Carbohydr Polym 2025; 347:122761. [PMID: 39486988 DOI: 10.1016/j.carbpol.2024.122761] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/09/2024] [Accepted: 09/15/2024] [Indexed: 11/04/2024]
Abstract
Skin, as the biggest organ and outermost surface of the human body, is prone to injury due to various challenges, especially the expanding potential of accidents, which bring a huge social and economic burden. Hydrogels are emerging as the most promising candidate for wound dressings, which not only fulfill the varied requirements of dressings but also serve as drug carriers. But limited breathability, rapid drug release, and inadequate mechanical properties remains a significant challenge. Herein, we report a strong and tough sodium alginate/polyacrylate hydrogel fibers-based dressing with directional controlled drug release for wound healing promotion. Mimicking the bamboo structure, the drug solution is encapsulated within the fiber, and the rate of drug release can be modulated by controlling the wall thickness of the fiber. A cross-network structure in the hydrogel fiber through hydrogen bond and calcium ion crosslinking resulted in a 38 % increase in tensile strength. By precisely controlling the feeding process during weaving, drug-loaded fibers can be prepared at specific locations to facilitate targeted delivery to skin wound sites. Drug-loaded fabric has the breathability and biocompatibility required for dressings to promote wound healing. The findings highlight the potential of alginate/polyacrylate hydrogel fabrics for effective wound treatment.
Collapse
Affiliation(s)
- Qianyu Zhang
- Engineering Research Center of Knitting Technology, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhiyu Huang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China
| | - Hong Jiang
- Department of Hand Surgery, Wuxi 9(th) People's Hospital Affiliated to Soochow University, Wuxi 214062, China
| | - Mengru Wu
- Engineering Research Center of Knitting Technology, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhijia Dong
- Engineering Research Center of Knitting Technology, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Chaoyu Chen
- Engineering Research Center of Knitting Technology, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Fengxiang Chen
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China.
| | - Gang Zhao
- Department of Hand Surgery, Wuxi 9(th) People's Hospital Affiliated to Soochow University, Wuxi 214062, China.
| | - Pibo Ma
- Engineering Research Center of Knitting Technology, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Wang S, Zhan J, Zhou X, He C, Wei P, Yi T. Design and Application of an In Situ Traceable Nitric Oxide Donor for Promoting the Healing of Wound Infections. Adv Healthc Mater 2024; 13:e2400922. [PMID: 38800965 DOI: 10.1002/adhm.202400922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Therapies for wound infections require medications with antibacterial and wound-healing functions. However, it remains a challenge to produce a single drug that can perform dual functions. Nitric oxide (NO), with its antibacterial and wound-healing activities, is an ideal solution to address this challenge. However, many controlled-release strategies for NO rely on external probes for tracing the release in situ, making it difficult to precisely assess the location and magnitude. To address this issue, this study describes a novel NO donor, DHU-NO1, capable of efficiently releasing NO under mild conditions (450 nm illumination). Simultaneously, DHU-NO1 generates the fluorophore Azure B (AZB), which enables direct, non-consumptive tracing of the NO release by monitoring the fluorescence and absorption changes in AZB. Given that NO can be conveniently traced, the amount of released NO can be controlled during biological applications, thereby allowing both functions of NO to be performed. When applied to the affected area, DHU-NO1, illuminated by both a simple light-emitting diode (LED) light source and natural light, achieves significant antibacterial effects against wound infections and promotes wound healing in mice. This study offers a novel and effective approach for treating wound infections.
Collapse
Affiliation(s)
- Shasha Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Jiexiang Zhan
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Xiaojun Zhou
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Chuanglong He
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Peng Wei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Tao Yi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
3
|
Ning X, Zhu X, Wang Y, Yang J. Recent advances in carbon monoxide-releasing nanomaterials. Bioact Mater 2024; 37:30-50. [PMID: 38515608 PMCID: PMC10955104 DOI: 10.1016/j.bioactmat.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/23/2024] Open
Abstract
As an endogenous signaling molecule, carbon monoxide (CO) has emerged as an increasingly promising option regarding as gas therapy due to its positive pharmacological effects in various diseases. Owing to the gaseous nature and potential toxicity, it is particularly important to modulate the CO release dosages and targeted locations to elucidate the biological mechanisms of CO and facilitate its clinical applications. Based on these, diverse CO-releasing molecules (CORMs) have been developed for controlled release of CO in biological systems. However, practical applications of these CORMs are limited by several disadvantages including low stability, poor solubility, weak releasing controllability, random diffusion, and potential toxicity. In light of rapid developments and diverse advantages of nanomedicine, abundant nanomaterials releasing CO in controlled ways have been developed for therapeutic purposes across various diseases. Due to their nanoscale sizes, diversified compositions and modified surfaces, vast CO-releasing nanomaterials (CORNMs) have been constructed and exhibited controlled CO release in specific locations under various stimuli with better pharmacokinetics and pharmacodynamics. In this review, we present the recent progress in CORNMs according to their compositions. Following a concise introduction to CO therapy, CORMs and CORNMs, the representative research progress of CORNMs constructed from organic nanostructures, hybrid nanomaterials, inorganic nanomaterials, and nanocomposites is elaborated. The basic properties of these CORNMs, such as active components, CO releasing mechanisms, detection methods, and therapeutic applications, are discussed in detail and listed in a table. Finally, we explore and discuss the prospects and challenges associated with utilizing nanomaterials for biological CO release.
Collapse
Affiliation(s)
- Xiaomei Ning
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Youfu Wang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jinghui Yang
- Department of Organ Transplantation, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| |
Collapse
|
4
|
Köhler I, Bivik Eding C, Kasic NK, Verma D, Enerbäck C. NOS2-derived low levels of NO drive psoriasis pathogenesis. Cell Death Dis 2024; 15:449. [PMID: 38926337 PMCID: PMC11208585 DOI: 10.1038/s41419-024-06842-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
Psoriasis is an IL-23/Th17-mediated skin disorder with a strong genetic predisposition. The impact of its susceptibility gene nitric oxide synthase 2 (NOS2) remains unknown. Here, we demonstrate strong NOS2 mRNA expression in psoriatic epidermis, an effect that is IL-17 dependent. However, its complete translation to protein is prevented by the IL-17-induced miR-31 implying marginally upregulated NO levels in psoriatic skin. We demonstrate that lower levels of NO, as opposed to higher levels, increase keratinocyte proliferation and mediate IL-17 downstream effects. We hypothesized that the psoriatic phenotype may be alleviated by either eliminating or increasing cellular NO levels. In fact, using the imiquimod psoriasis mouse model, we found a profound impact on the psoriatic inflammation in both IMQ-treated NOS2 KO mice and wild-type mice treated with IMQ and the NO-releasing berdazimer gel. In conclusion, we demonstrate that IL-17 induces NOS2 and fine-tunes its translation towards a window of proinflammatory and hyperproliferative effects and identify NO donor therapy as a new treatment modality for psoriasis.
Collapse
Affiliation(s)
- Ines Köhler
- Ingrid Asp Psoriasis Research Center, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Cecilia Bivik Eding
- Ingrid Asp Psoriasis Research Center, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Nada-Katarina Kasic
- Ingrid Asp Psoriasis Research Center, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Deepti Verma
- Ingrid Asp Psoriasis Research Center, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Charlotta Enerbäck
- Ingrid Asp Psoriasis Research Center, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
| |
Collapse
|
5
|
Navale GR, Singh S, Ghosh K. NO donors as the wonder molecules with therapeutic potential: Recent trends and future perspectives. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
6
|
Luo Z, Ng G, Zhou Y, Boyer C, Chandrawati R. Polymeric Amines Induce Nitric Oxide Release from S-Nitrosothiols. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2200502. [PMID: 35789202 DOI: 10.1002/smll.202200502] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/07/2022] [Indexed: 06/15/2023]
Abstract
Catalytic generation of nitric oxide (NO) from NO donors by nanomaterials has enabled prolonged NO delivery for various biomedical applications, but this approach requires laborious synthesis routes. In this study, a new class of materials, that is, polymeric amines including polyethyleneimine (PEI), poly-L-lysine, and poly(allylamine hydrochloride), is discovered to induce NO generation from S-nitrosothiols (RSNOs) at physiological conditions. Controlled NO generation can be readily achieved by tuning the concentration of the NO donors (RSNOs) and polymers, and the type and molecular weight of the polymers. Importantly, the mechanism of NO generation by these polymers is deciphered to be attributed to the nucleophilic reaction between primary amines on polymers and the SNO groups of RSNOs. The NO-releasing feature of the polymers can be integrated into a suite of materials, for example, simply by embedding PEI into poly(vinyl alcohol) (PVA) hydrogels. The functionality of the PVA/PEI hydrogels is demonstrated for Pseudomonas aeruginosa biofilm prevention with a ≈4 log reduction within 6 h. As NO has potential therapeutic implications in various diseases, the identification of polymeric amines to induce NO release will open new opportunities in NO-generating biomaterials for antibacterial, antiviral, anticancer, antithrombotic, and wound healing applications.
Collapse
Affiliation(s)
- Zijie Luo
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Gervase Ng
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
- Cluster for Advanced Macromolecular Design (CAMD), The University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Yingzhu Zhou
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Cyrille Boyer
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
- Cluster for Advanced Macromolecular Design (CAMD), The University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Rona Chandrawati
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| |
Collapse
|
7
|
Tao S, Shen Z, Chen J, Shan Z, Huang B, Zhang X, Zheng L, Liu J, You T, Zhao F, Hu J. Red Light-Mediated Photoredox Catalysis Triggers Nitric Oxide Release for Treatment of Cutibacterium Acne Induced Intervertebral Disc Degeneration. ACS NANO 2022; 16:20376-20388. [PMID: 36469724 DOI: 10.1021/acsnano.2c06328] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Intervertebral disc degeneration (IVDD) has been known as a highly prevalent and disabling disease, which is one of the main causes of low back pain and disability. Unfortunately, there is no effective cure to treat this formidable disease, and surgical interventions are typically applied. Herein, we report that the local administration of nitric oxide (NO)-releasing micellar nanoparticles can efficiently treat IVDD associated with Modic changes in a rat model established by infection with Cutibacterium acnes (C. acnes). By covalent incorporation of palladium(II) meso-tetraphenyltetrabenzoporphyrin photocatalyst and coumarin-based NO donors into the core of micellar nanoparticles, we demonstrate that the activation of the UV-absorbing coumarin-based NO donors can be achieved under red light irradiation via photoredox catalysis, although it remains a great challenge to implement photoredox catalysis reactions in biological conditions due to the complex microenvironments. Notably, the local delivery of NO can not only efficiently eradicate C. acnes pathogens but also inhibit the inflammatory response and osteoclast differentiation in the intervertebral disc tissues, exerting antibacterial, anti-inflammatory, and antiosteoclastogenesis effects. This work provides a feasible means to efficiently treat IVDD by the local administration of NO signaling molecules without resorting to a surgical approach.
Collapse
Affiliation(s)
- Siyue Tao
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou310016, China
| | - Zhiqiang Shen
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei230026, Anhui, China
| | - Jian Chen
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou310016, China
| | - Zhi Shan
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou310016, China
| | - Bao Huang
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou310016, China
| | - Xuyang Zhang
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou310016, China
| | - Lin Zheng
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou310016, China
| | - Junhui Liu
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou310016, China
| | - Tao You
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei230001, AnhuiChina
| | - Fengdong Zhao
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou310016, China
| | - Jinming Hu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei230026, Anhui, China
| |
Collapse
|
8
|
Affiliation(s)
- Phuong Pham
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
| | - Susan Oliver
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
9
|
Bao X, Zheng S, Zhang L, Shen A, Zhang G, Liu S, Hu J. Nitric-Oxide-Releasing aza-BODIPY: A New Near-Infrared J-Aggregate with Multiple Antibacterial Modalities. Angew Chem Int Ed Engl 2022; 61:e202207250. [PMID: 35657486 DOI: 10.1002/anie.202207250] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Indexed: 01/20/2023]
Abstract
The development of near-infrared (NIR) J-aggregates has received increasing attention due to their broad applications. Here, we report the nitrosation of an amine-containing aza-BODIPY precursor (BDP-NH2 ), affording the first nitric oxide (NO)-releasing NIR J-aggregate (BDP-NO). The introduction of N-nitrosamine moieties efficiently inhibits the aromatic interactions of BDP-NH2 , which instead promotes the formation of J-aggregates within micellar nanoparticles with a remarkable bathochromic shift of ≈109 nm to the NIR window (820 nm). Interestingly, the NO release and photothermal conversion efficiency (PTCE) can be delicately tuned by the loading contents of BDP-NO within micellar nanoparticles, thereby enabling multiple antibacterial modalities by exploring either NO release, photothermal therapy (PTT), or both. We demonstrate the combination of NO and PTT can elevate antibacterial activity while attenuating PTT-associated inflammation for the in vivo treatment of MRSA infection.
Collapse
Affiliation(s)
- Xinyao Bao
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230001, China
| | - Shaoqiu Zheng
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230001, China
| | - Lei Zhang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230001, China
| | - Aizong Shen
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230001, China
| | - Guoying Zhang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230001, China
| | - Shiyong Liu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230001, China
| | - Jinming Hu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230001, China
| |
Collapse
|
10
|
Bao X, Zheng S, Zhang L, Shen A, Zhang G, Liu S, Hu J. Nitric Oxide‐Releasing aza‐BODIPY: A New Near‐Infrared J‐Aggregate with Multiple Antibacterial Modalities. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xinyao Bao
- China University of Science and Technology Department of Polymer Science and Engineering CHINA
| | - Shaoqiu Zheng
- China University of Science and Technology Department of Polymer Science and Engineering CHINA
| | - Lei Zhang
- China University of Science and Technology Department of Pharmacy CHINA
| | - Aizong Shen
- China University of Science and Technology Department of Pharmacy CHINA
| | - Guoying Zhang
- China University of Science and Technology Department of Polymer Science and Engineering CHINA
| | - Shiyong Liu
- China University of Science and Technology Department of Polymer Science and Engineering CHINA
| | - Jinming Hu
- University of Science and Technology of China Department of Polymer Science and Engineering 96 Jinzhai Road230026中国 230026 Hefei CHINA
| |
Collapse
|
11
|
Luo Z, Zhou Y, Yang T, Gao Y, Kumar P, Chandrawati R. Ceria Nanoparticles as an Unexpected Catalyst to Generate Nitric Oxide from S-Nitrosoglutathione. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105762. [PMID: 35060323 DOI: 10.1002/smll.202105762] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Ceria nanoparticles (NPs) are widely reported to scavenge nitric oxide (NO) radicals. This study reveals evidence that an opposite effect of ceria NPs exists, that is, to induce NO generation. Herein, S-nitrosoglutathione (GSNO), one of the most biologically abundant NO donors, is catalytically decomposed by ceria NPs to produce NO. Ceria NPs maintain a high NO release recovery rate and retain their crystalline structure for at least 4 weeks. Importantly, the mechanism of this newly discovered NO generation capability of ceria NPs from GSNO is deciphered to be attributed to the oxidation of Ce3+ to Ce4+ on their surface, which is supported by X-ray photoelectron spectroscopy and density functional theory analysis. The prospective therapeutic effect of NO-generating ceria NPs is evaluated by the suppression of cancer cells, displaying a significant reduction of 93% in cell viability. Overall, this report is, to the authors' knowledge, the first study to identify the capability of ceria NPs to induce NO generation from GSNO, which overturns the conventional concept of them acting solely as a NO-scavenging agent. This study will deepen our knowledge about the therapeutic effects of ceria NPs and open a new route toward the NO-generating systems for biomedical applications.
Collapse
Affiliation(s)
- Zijie Luo
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Yingzhu Zhou
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Tao Yang
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Yuan Gao
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Priyank Kumar
- School of Chemical Engineering, The University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Rona Chandrawati
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| |
Collapse
|
12
|
Fang Y, Cheng J, Shen Z, You T, Ding S, Hu J. Ultrasound-Mediated Release of Gaseous Signaling Molecules for Biomedical Applications. Macromol Rapid Commun 2022; 43:e2100814. [PMID: 35032066 DOI: 10.1002/marc.202100814] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/05/2022] [Indexed: 11/07/2022]
Abstract
Although nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2 S) have been considered as notorious gas pollutants for decades, they are considered as endogenous gaseous signaling molecules (GSMs), which have been widely recognized for their important signaling functions and prominent medical applications in human physiology. To achieve local delivery of GSMs to optimize therapeutic efficacy and reduce systemic side effects, stimuli-responsive nanocarriers have been successfully developed. Among them, ultrasound is considered as an attractive theranostic modality that can be used to track drug carriers, trigger drug release, and improve drug deposition, etc. In this minireview, we summarize recent achievements in designing ultrasound-responsive nanocarriers for the controlled delivery of GSMs and their biomedical applications. This emerging research direction enables the controlled delivery of GSMs to deep tissues, and the combination of ultrasound imaging techniques offers many possibilities for the fabrication of new theranostic platforms. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yuanmeng Fang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jian Cheng
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhiqiang Shen
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Tao You
- The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Shenggang Ding
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
13
|
Hu J, Fang Y, Huang X, Qiao R, Quinn JF, Davis TP. Engineering macromolecular nanocarriers for local delivery of gaseous signaling molecules. Adv Drug Deliv Rev 2021; 179:114005. [PMID: 34687822 DOI: 10.1016/j.addr.2021.114005] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/30/2021] [Accepted: 10/11/2021] [Indexed: 02/08/2023]
Abstract
In addition to being notorious air pollutants, nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) have also been known as endogenous gaseous signaling molecules (GSMs). These GSMs play critical roles in maintaining the homeostasis of living organisms. Importantly, the occurrence and development of many diseases such as inflammation and cancer are highly associated with the concentration changes of GSMs. As such, GSMs could also be used as new therapeutic agents, showing great potential in the treatment of many formidable diseases. Although clinically it is possible to directly inhale GSMs, the precise control of the dose and concentration for local delivery of GSMs remains a substantial challenge. The development of gaseous signaling molecule-releasing molecules provides a great tool for the safe and convenient delivery of GSMs. In this review article, we primarily focus on the recent development of macromolecular nanocarriers for the local delivery of various GSMs. Learning from the chemistry of small molecule-based donors, the integration of these gaseous signaling molecule-releasing molecules into polymeric matrices through physical encapsulation, post-modification, or direct polymerization approach renders it possible to fabricate numerous macromolecular nanocarriers with optimized pharmacokinetics and pharmacodynamics, revealing improved therapeutic performance than the small molecule analogs. The development of GSMs represents a new means for many disease treatments with unique therapeutic outcomes.
Collapse
|
14
|
Ma T, Zhang Z, Chen Y, Su H, Deng X, Liu X, Fan Y. Delivery of Nitric Oxide in the Cardiovascular System: Implications for Clinical Diagnosis and Therapy. Int J Mol Sci 2021; 22:ijms222212166. [PMID: 34830052 PMCID: PMC8625126 DOI: 10.3390/ijms222212166] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Nitric oxide (NO) is a key molecule in cardiovascular homeostasis and its abnormal delivery is highly associated with the occurrence and development of cardiovascular disease (CVD). The assessment and manipulation of NO delivery is crucial to the diagnosis and therapy of CVD, such as endothelial dysfunction, atherosclerotic progression, pulmonary hypertension, and cardiovascular manifestations of coronavirus (COVID-19). However, due to the low concentration and fast reaction characteristics of NO in the cardiovascular system, clinical applications centered on NO delivery are challenging. In this tutorial review, we first summarized the methods to estimate the in vivo NO delivery process, based on computational modeling and flow-mediated dilation, to assess endothelial function and vulnerability of atherosclerotic plaque. Then, emerging bioimaging technologies that have the potential to experimentally measure arterial NO concentration were discussed, including Raman spectroscopy and electrochemical sensors. In addition to diagnostic methods, therapies aimed at controlling NO delivery to regulate CVD were reviewed, including the NO release platform to treat endothelial dysfunction and atherosclerosis and inhaled NO therapy to treat pulmonary hypertension and COVID-19. Two potential methods to improve the effectiveness of existing NO therapy were also discussed, including the combination of NO release platform and computational modeling, and stem cell therapy, which currently remains at the laboratory stage but has clinical potential for the treatment of CVD.
Collapse
|
15
|
Lee DY, Lee SY, Jo C, Yoon Y, Jeong JY, Hur SJ. Effect on health from consumption of meat and meat products. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 63:955-976. [PMID: 34796340 PMCID: PMC8564306 DOI: 10.5187/jast.2021.e101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/26/2021] [Accepted: 08/30/2021] [Indexed: 12/15/2022]
Abstract
The aim of this study was to investigate the effects of dietary sodium nitrite and meat on human health. Sodium nitrite in processed meat is known to be one of the main precursors of carcinogens, such as N-nitroso compounds. However, we previously found that processed meat is not the primary source of sodium nitrite; nitrate or the conversion of nitrate in vegetables are contribute to generate more than 70% Sodium nitrite or nitrate containing compounds in body. Although the heavy consumption of meat is likely to cause various diseases, meat intake is not the only cause of colorectal cancer. Our review indicates that sodium nitrite derived from foods and endogenous nitric oxide may exhibit positive effects on human health, such as preventing cardiovascular disease or improving reproductive function. Therefore, further epidemiological studies considering various factors, such as cigarette consumption, alcohol consumption, stress index, salt intake, and genetic factors, are required to reliably elucidate the effects of dietary sodium nitrite and meat on the incidence of diseases, such as colorectal cancer.
Collapse
Affiliation(s)
- Da Young Lee
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Seung Yun Lee
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Cheorun Jo
- Department of Agricultural Biotechnology,
Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| | - Yohan Yoon
- Department of Food and Nutrition,
Sookmyung Women’s University, Seoul 04310, Korea
| | - Jong Youn Jeong
- School of Food Biotechnology and
Nutrition, Kyungsung University, Busan 48434, Korea
| | - Sun Jin Hur
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|
16
|
Yu X, Wang Z, Han Z. Synthesis and Structural Characterisation of Dinuclear Aluminium Complexes Supported by NNO‐Tridentate Schiff‐Base Ligands and Their Catalysis in the Ring‐Opening Polymerisation of ϵ‐Caprolactone. ChemistrySelect 2021. [DOI: 10.1002/slct.202100635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Xiaofeng Yu
- School of Materials and Chemical Engineering University Bengbu 1866 Caoshan Road Anhui 233030 P. R. China
- Department of Chemistry University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 P. R. China
- Bengbu Product Quality and Inspection Institute 100 Anmin Road Bengbu Anhui 233030 P. R. China
| | - Zhongxia Wang
- Department of Chemistry University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 P. R. China
| | - Zhiyong Han
- Department of Chemistry University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 P. R. China
| |
Collapse
|