1
|
Yang X, Zhao Y, Liu W, Gao Z, Wang C, Wang C, Li S, Zhang X. Single-cell transcriptomics reveals neural stem cell trans-differentiation and cell subpopulations in whole heart decellularized extracellular matrix. BIOPHYSICS REPORTS 2024; 10:241-253. [PMID: 39281200 PMCID: PMC11399890 DOI: 10.52601/bpr.2024.240011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/16/2024] [Indexed: 09/18/2024] Open
Abstract
The whole heart decellularized extracellular matrix (ECM) has become a promising scaffold material for cardiac tissue engineering. Our previous research has shown that the whole heart acellular matrix possesses the memory function regulating neural stem cells (NSCs) trans-differentiating to cardiac lineage cells. However, the cell subpopulations and phenotypes in the trans-differentiation of NSCs have not been clearly identified. Here, we performed single-cell RNA sequencing and identified 2,765 cells in the recellularized heart with NSCs revealing the cellular diversity of cardiac and neural lineage, confirming NSCs were capable of trans-differentiating into the cardiac lineage while maintaining the original ability to differentiate into the neural lineage. Notably, the trans-differentiated heart-like cells have dual signatures of neuroectoderm and cardiac mesoderm. This study unveils an in-depth mechanism underlying the trans-differentiation of NSCs and provides a new opportunity and theoretical basis for cardiac regeneration.
Collapse
Affiliation(s)
- Xiaoning Yang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Yuwei Zhao
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Wei Liu
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Zhongbao Gao
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Chunlan Wang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Changyong Wang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Siwei Li
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xiao Zhang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| |
Collapse
|
2
|
Chen YL, Li CY, Wang PH, Wang R, Zhuo X, Zhang Y, Wang SJ, Sun ZP, Chen JH, Cheng X, Zhang ZJ, Ren CH, Wang QJ. Comparative Proteomic Identification of Ram Sperm before and after In Vitro Capacitation. Animals (Basel) 2024; 14:2363. [PMID: 39199899 PMCID: PMC11350773 DOI: 10.3390/ani14162363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
Ram sperm undergo a sequence of physiological and biochemical changes collectively termed as capacitation to perform oocyte fertilization. However, the protein changes induced by capacitation remain in need of further exploration. Thus, the present study investigated the comparative proteomic profiling in ram spermatozoa under non-capacitating (NC) and capacitating (CAP) conditions in vitro using a liquid chromatography-tandem mass spectrometry combined with tandem mass tag labeling strategy. As a results, 2050 proteins were identified and quantified; 348 of them were differentially abundant, with 280 of the proteins upregulated and 68 of the proteins downregulated between the CAP and NC spermatozoa, respectively. Functional enrichment analysis indicated that the differentially abundant proteins Prune Exopolyphosphatase 1, Galactose-1-Phosphate Uridylyltransferase, and ATP Citrate Lyase were strictly related to energy production and conversion, and Phosphoglycolate phosphatase, Glucosamine-6-Phosphate Deaminase 1 and 2 were related to metabolism, RNA processing, and vesicular transport pathways. Furthermore, the networks of protein-protein interaction indicated a strong interaction among these differential proteins in annotated pathways such as ubiquitin and transport metabolism. Our findings indicate that capacitation progress might be regulated through different pathways, providing insights into mechanisms involved in ram sperm capacitation and fertility.
Collapse
Affiliation(s)
- Ya-Le Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (P.-H.W.); (R.W.); (X.Z.); (S.-J.W.); (Z.-P.S.); (J.-H.C.); (X.C.); (Z.-J.Z.)
| | - Chun-Yan Li
- Yunnan Animal Science and Veterinary Institute, Kunming 650224, China; (C.-Y.L.); (Y.Z.)
| | - Peng-Hui Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (P.-H.W.); (R.W.); (X.Z.); (S.-J.W.); (Z.-P.S.); (J.-H.C.); (X.C.); (Z.-J.Z.)
| | - Ru Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (P.-H.W.); (R.W.); (X.Z.); (S.-J.W.); (Z.-P.S.); (J.-H.C.); (X.C.); (Z.-J.Z.)
| | - Xian Zhuo
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (P.-H.W.); (R.W.); (X.Z.); (S.-J.W.); (Z.-P.S.); (J.-H.C.); (X.C.); (Z.-J.Z.)
| | - Yan Zhang
- Yunnan Animal Science and Veterinary Institute, Kunming 650224, China; (C.-Y.L.); (Y.Z.)
| | - Shi-Jia Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (P.-H.W.); (R.W.); (X.Z.); (S.-J.W.); (Z.-P.S.); (J.-H.C.); (X.C.); (Z.-J.Z.)
| | - Zhi-Peng Sun
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (P.-H.W.); (R.W.); (X.Z.); (S.-J.W.); (Z.-P.S.); (J.-H.C.); (X.C.); (Z.-J.Z.)
| | - Jia-Hong Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (P.-H.W.); (R.W.); (X.Z.); (S.-J.W.); (Z.-P.S.); (J.-H.C.); (X.C.); (Z.-J.Z.)
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Chuzhou 233200, China
| | - Xiao Cheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (P.-H.W.); (R.W.); (X.Z.); (S.-J.W.); (Z.-P.S.); (J.-H.C.); (X.C.); (Z.-J.Z.)
| | - Zi-Jun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (P.-H.W.); (R.W.); (X.Z.); (S.-J.W.); (Z.-P.S.); (J.-H.C.); (X.C.); (Z.-J.Z.)
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Chuzhou 233200, China
| | - Chun-Huan Ren
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (P.-H.W.); (R.W.); (X.Z.); (S.-J.W.); (Z.-P.S.); (J.-H.C.); (X.C.); (Z.-J.Z.)
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Chuzhou 233200, China
| | - Qiang-Jun Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.-L.C.); (P.-H.W.); (R.W.); (X.Z.); (S.-J.W.); (Z.-P.S.); (J.-H.C.); (X.C.); (Z.-J.Z.)
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Chuzhou 233200, China
| |
Collapse
|
3
|
Smandri A, Al-Masawa ME, Hwei NM, Fauzi MB. ECM-derived biomaterials for regulating tissue multicellularity and maturation. iScience 2024; 27:109141. [PMID: 38405613 PMCID: PMC10884934 DOI: 10.1016/j.isci.2024.109141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Recent breakthroughs in developing human-relevant organotypic models led to the building of highly resemblant tissue constructs that hold immense potential for transplantation, drug screening, and disease modeling. Despite the progress in fine-tuning stem cell multilineage differentiation in highly controlled spatiotemporal conditions and hosting microenvironments, 3D models still experience naive and incomplete morphogenesis. In particular, existing systems and induction protocols fail to maintain stem cell long-term potency, induce high tissue-level multicellularity, or drive the maturity of stem cell-derived 3D models to levels seen in their in vivo counterparts. In this review, we highlight the use of extracellular matrix (ECM)-derived biomaterials in providing stem cell niche-mimicking microenvironment capable of preserving stem cell long-term potency and inducing spatial and region-specific differentiation. We also examine the maturation of different 3D models, including organoids, encapsulated in ECM biomaterials and provide looking-forward perspectives on employing ECM biomaterials in building more innovative, transplantable, and functional organs.
Collapse
Affiliation(s)
- Ali Smandri
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Maimonah Eissa Al-Masawa
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Ng Min Hwei
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
4
|
Zheng L, Liu Y, Jiang L, Wang X, Chen Y, Li L, Song M, Zhang H, Zhang YS, Zhang X. Injectable decellularized dental pulp matrix-functionalized hydrogel microspheres for endodontic regeneration. Acta Biomater 2023; 156:37-48. [PMID: 36455855 DOI: 10.1016/j.actbio.2022.11.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022]
Abstract
The sufficient imitation of tissue structures and components represents an effective and promising approach for tissue engineering and regenerative medicine applications. Dental pulp disease is one of the most common oral diseases, although functional pulp regeneration remains challenging. Herein, we propose a strategy that employs hydrogel microspheres incorporated with decellularized dental pulp matrix-derived bioactive factors to simulate a pulp-specific three-dimensional (3D) microenvironment. The dental pulp microenvironment-specific microspheres constructed by this regenerative strategy exhibited favorable plasticity, biocompatibility, and biological performances. Human dental pulp stem cells (hDPSCs) cultured on the constructed microspheres exhibited enhanced pulp-formation ability in vitro. Furthermore, the hDPSCs-microcarriers achieved the regeneration of pulp-like tissue and new dentin in a semi-orthotopic model in vivo. Mechanistically, the decellularized pulp matrix-derived bioactive factors mediated the multi-directional differentiation of hDPSCs to regenerate the pulp tissue by eliciting the secretion of crucial bioactive cues. Our findings demonstrated that a 3D dental pulp-specific microenvironment facilitated by hydrogel microspheres and dental pulp-specific bioactive factors regenerated the pulp-dentin complex and could be served as a promising treatment option for dental pulp disease. STATEMENT OF SIGNIFICANCE: Injectable bioscaffolds are increasingly used for regenerative endodontic treatment. Despite their success related to their ability to load stem cells, bioactive factors, and injectability, conventional bulk bioscaffolds have drawbacks such as ischemic necrosis in the central region. Various studies have shown that ischemic necrosis in the central region can be corrected by injectable hydrogel microspheres. Unfortunately, pristine microspheres or microspheres without dental pulp-specific bioactive factor would oftentimes fail to regulate stem cells fates in dental pulp multi-directional differentiation. Our present study reported the biofabrication of dental pulp-derived decellularized matrix functionalized gelatin microspheres, which contained dental pulp-specific bioactive factors and have the potential application in endodontic regeneration.
Collapse
Affiliation(s)
- Liwen Zheng
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, PR China; Stomatological Hospital of Chongqing Medical University, Chongqing 401174, PR China
| | - Yaxian Liu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, PR China; Stomatological Hospital of Chongqing Medical University, Chongqing 401174, PR China
| | - Lin Jiang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, PR China; Stomatological Hospital of Chongqing Medical University, Chongqing 401174, PR China
| | - Xiaoping Wang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, PR China; Stomatological Hospital of Chongqing Medical University, Chongqing 401174, PR China
| | - Yuqin Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing 401174, PR China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, PR China
| | - Lan Li
- Stomatological Hospital of Chongqing Medical University, Chongqing 401174, PR China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, PR China
| | - Mingyu Song
- Stomatological Hospital of Chongqing Medical University, Chongqing 401174, PR China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, PR China
| | - Hongmei Zhang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, PR China; Stomatological Hospital of Chongqing Medical University, Chongqing 401174, PR China.
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| | - Ximu Zhang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, PR China; Stomatological Hospital of Chongqing Medical University, Chongqing 401174, PR China.
| |
Collapse
|