1
|
Kulkarni SS, Tong DK, Wu CT, Kao CY, Chattopadhyay S. Defect Engineered Bi 2Te 3 Nanosheets with Enhanced Haloperoxidase Activity for Marine Antibiofouling. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401929. [PMID: 38934508 DOI: 10.1002/smll.202401929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/27/2024] [Indexed: 06/28/2024]
Abstract
Defective bismuth telluride (Bi2Te3) nanosheets, an artificial nanozyme mimicking haloperoxidase activity (hPOD), show promise as eco-friendly, bactericidal, and antimicrofouling materials by enhancing cytotoxic hypohalous acid production from halides and H2O2. Microscopic and spectroscopic characterization reveals that controlled NaOH (upto X = 250 µL) etching of the nearly inactive non-transition metal chalcogenide Bi2Te3 nanosheets creates controlled defects (d), such as Bi3+species, in d-Bi2Te3-X that induces enhanced hPOD activity. d-Bi2Te3-250 exhibits approximately eight-fold improved hPOD than the as-grown Bi2Te3 nanosheets. The antibacterial activity of d-Bi2Te3-250 nanozymes, studied by bacterial viability, show 1, and 45% viability for Staphylococcus aureus and Pseudomonas aeruginosa, respectively, prevalent in marine environments. The hPOD mechanism is confirmed using scavengers, implicating HOBr and singlet oxygen for the effect. The antimicrofouling property of the d-Bi2Te3-250 nanozyme has been studied on Pseudomonas aeruginosa biofilm in a lab setting by multiple assays, and also on titanium (Ti) plates coated with the nanozyme mixed commercial paint, exposed to seawater in a real setting. All studies, including direct microscopic evidence, exhibit inhibition of microfouling, up to ≈73%, in the presence of nanozymes. This approach showcases that defect engineering can induce antibacterial, and antimicrofouling activity in non-transition metal chalcogenides, offering an inexpensive alternative to noble metals.
Collapse
Affiliation(s)
- Sagar Sunil Kulkarni
- Institute of Biophotonics, National Yang-Ming Chiao Tung University, 155, Sec-2 Li Nong Street, Taipei, 112, Taiwan
| | - Dang Khoa Tong
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, 155, Sec-2 Li Nong Street, Taipei, 112, Taiwan
| | - Chien-Ting Wu
- Taiwan Semiconductor Research Institute, National Applied Research Laboratories, Hsinchu, 300, Taiwan
| | - Cheng-Yen Kao
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, 155, Sec-2 Li Nong Street, Taipei, 112, Taiwan
| | - Surojit Chattopadhyay
- Institute of Biophotonics, National Yang-Ming Chiao Tung University, 155, Sec-2 Li Nong Street, Taipei, 112, Taiwan
| |
Collapse
|
2
|
Hong C, Chen T, Wu M, Lin J, Gao C, Ma X, Liu Z, Yang X, Wu A. Bismuth-based two-dimensional nanomaterials for cancer diagnosis and treatment. J Mater Chem B 2023; 11:8866-8882. [PMID: 37661768 DOI: 10.1039/d3tb01544k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The intrinsic high X-ray attenuation and insignificant biological toxicity of Bi-based nanomaterials make them a category of advanced materials in oncology. Bi-based two-dimensional nanomaterials have gained rapid development in cancer diagnosis and treatment owing to their adjustable bandgap structure, high specific surface area and strong NIR absorption. In addition to the single functional cancer diagnosis and treatment modalities, Bi-based two-dimensional nanomaterials have been certified for accomplishing multi-imaging guided multifunctional synergistic cancer therapies. In this review, we summarize the recent progress including controllable synthesis, defect engineering and surface modifications of Bi-based two-dimensional nanomaterials for cancer diagnosis and treatment in the past ten years. Their medical applications in cancer imaging and therapies are also presented. Finally, we discuss the potential challenges and future research priorities of Bi-based two-dimensional nanomaterials.
Collapse
Affiliation(s)
- Chengyuan Hong
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, P. R. China.
- Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo, 315100, P. R. China.
| | - Tianxiang Chen
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, P. R. China.
| | - Manxiang Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, P. R. China.
| | - Jie Lin
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, P. R. China.
| | - Changyong Gao
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, P. R. China.
| | - Xuehua Ma
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, P. R. China.
| | - Zhusheng Liu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, P. R. China.
| | - Xiaogang Yang
- Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo, 315100, P. R. China.
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, P. R. China.
| |
Collapse
|
3
|
Ouyang M, Wang X, Fu Y, Xie G, Du S, Li Y, Zhang L, Tao J, Zhu J. Skin optical clearing enabled by dissolving hyaluronic acid microneedle patches. Int J Biol Macromol 2022; 220:1188-1196. [PMID: 36044941 DOI: 10.1016/j.ijbiomac.2022.08.153] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/27/2022] [Accepted: 08/23/2022] [Indexed: 11/05/2022]
Abstract
Optical imaging and phototherapy are of great significance in the detection, diagnosis, and therapy of diseases. Depth of light in the skin tissues in optical imaging and phototherapy can be significantly improved with the assistance of optical clearing technology by weakening the scattering from the refractive indexes inhomogeneity among skin constituents. However, the barrier of the stratum corneum restricts the penetration of optical clearing agents into deep tissues and limits the optical clearing effects. Herein, we develop an optical clearing strategy by using dissolving microneedle (MN) patches made of hyaluronic acid (HA), which can effortlessly and painlessly penetrate the stratum corneum to reach the epidermis and dermis. By using the HA MN patches, the transmittance of skin tissues is improved by about 12.13 %. We show that the HA MN patches enhance the clarity of blood vessels to realize naked-eyes observation. Moreover, a simulated subcutaneous tumor cells experiment also verifies that the optical clearing effects of the HA MN patch efficiently boost the efficiency of the photodynamic killing of tumor cells by 26.8 %. As a courageous attempt, this study provides a promising avenue to improve the optical clearing effects for further clinical application of optical imaging and phototherapy.
Collapse
Affiliation(s)
- Mengping Ouyang
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Xue Wang
- Department of Dermatology, Union Hospital, Tongji Medical College, HUST, Wuhan 430022, China
| | - Yangxue Fu
- Department of Dermatology, Union Hospital, Tongji Medical College, HUST, Wuhan 430022, China
| | - Ge Xie
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Shuo Du
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Yan Li
- Department of Dermatology, Union Hospital, Tongji Medical College, HUST, Wuhan 430022, China
| | - Lianbin Zhang
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Juan Tao
- Department of Dermatology, Union Hospital, Tongji Medical College, HUST, Wuhan 430022, China.
| | - Jintao Zhu
- Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| |
Collapse
|
4
|
Two-Dimensional Nanomaterial-based catalytic Medicine: Theories, advanced catalyst and system design. Adv Drug Deliv Rev 2022; 184:114241. [PMID: 35367308 DOI: 10.1016/j.addr.2022.114241] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/17/2022] [Accepted: 03/26/2022] [Indexed: 02/06/2023]
Abstract
Two-dimensional nanomaterial-based catalytic medicines that associate the superiorities of novel catalytic mechanisms with nanotechnology have emerged as absorbing therapeutic strategies for cancer therapy. Catalytic medicines featuring high efficiency and selectivity have been widely used as effective anticancer strategies without applying traditional nonselective and highly toxic chemodrugs. Moreover, two-dimensional nanomaterials are characterized by distinctive physicochemical properties, such as a sizeable bandgap, good conductivity, fast electron transfer and photoelectrochemical activity. The introduction of two-dimensional nanomaterials into catalytic medicine provides a more effective, controllable, and precise antitumor strategy. In this review, different types of two-dimensional nanomaterial-based catalytic nanomedicines are generalized, and their catalytic theories, advanced catalytic pathways and catalytic nanosystem design are also discussed in detail. Notably, future challenges and obstacles in the design and further clinical transformation of two-dimensional nanomaterial-based catalytic nanomedicine are prospected.
Collapse
|
5
|
Kang Y, Li Z, Lu F, Su Z, Ji X, Zhang S. Synthesis of red/black phosphorus-based composite nanosheets with a Z-scheme heterostructure for high-performance cancer phototherapy. NANOSCALE 2022; 14:766-779. [PMID: 34951432 DOI: 10.1039/d1nr07553e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two dimensional black phosphorus nanosheets (BP NSs) have attracted plenty of attention in the research field of cancer photonic therapy. However, the poor stability and relatively low efficiency of reactive oxygen species (ROS) generation of BP NSs limit their practical application. To address these drawbacks, herein we report a red/black phosphorus (RP/BP) composite nanosheet, M-RP/BP@ZnFe2O4, which was synthesized by (1) partially converting red phosphorus (RP) to black phosphorus (BP) followed by liquid-phase ultrasonic exfoliation to form RP/BP NSs, (2) in situ synthesis of ZnFe2O4 nanoparticles on the surface of RP/BP NSs, (3) and wrapping with the MCF-7 cell membrane. Due to the presence of RP, BP, ZnFe2O4 and the cell membrane, the M-RP/BP@ZnFe2O4 NSs exhibited high performance in cancer phototherapy with the following features: (i) a Z-scheme heterojunction structure was formed between RP/BP NSs thus enabling high separation efficiency of the photogenerated electrons and holes; (ii) the photoexcitation holes in the valence band of RP can break the tumor microenvironment by oxidizing glutathione; (iii) the NSs could decompose water to produce H2O2 and O2, which can be further converted to toxic ˙OH through the ZnFe2O4 catalyzed Fenton reaction and 1O2 through energy transfer, respectively; and (iv) the cell membrane wrapping improved the targeting of the composite NSs at the tumor site and photonic therapy can be finally triggered by a 660 nm laser to convert O2 to ˙O2- and 1O2. The in vitro cytotoxicity experiments showed that more than 90% cells were killed after photodynamic therapy (PDT) at 0.3 mg mL-1 M-RP/BP@ZnFe2O4 NSs, and the animal experiments with xenograft tumor model mice indicated that tumor growth was completely inhibited and the highest survival rate of 83.3% at 60 days post PDT was obtained.
Collapse
Affiliation(s)
- Yong Kang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, No. 19 Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Zhengjun Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Fengying Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Zhiguo Su
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Songping Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
6
|
Zhao Y, Liu Y, Wang Q, Liu J, Zhang S, Zhang T, Wang D, Wang Y, Jin L, Zhang H. Carambola-like Bi 2Te 3 superstructures with enhanced photoabsorption for highly efficient photothermal therapy in the second near-infrared biowindow. J Mater Chem B 2021; 9:7271-7277. [PMID: 34121105 DOI: 10.1039/d1tb00694k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Photothermal therapy (PTT) stimulated by light in the second near-infrared (NIR-II) biowindow shows great superiorities in the penetration ability of tissue and maximum permissible exposure (MPE). Exploring new photothermal agents with good optical absorbance in the NIR-II region is highly desirable for efficient cancer therapy. Herein, we successfully prepare carambola-like bismuth telluride (Bi2Te3) superstructures modified with PEGylated phospholipid (Bi2Te3@PEG) for CT imaging-guided PTT in the NIR-II biowindow. Attributing to their superstructures, Bi2Te3@PEG exhibited enhanced photoabsorption with higher photothermal conversion efficiency (55.3% for 1064 nm) compared with that of Bi2Te3 nanoparticles. Furthermore, the good X-ray attenuation capacity of Bi endows Bi2Te3@PEG with an outstanding performance as computed tomography (CT) contrast agents. Bi2Te3@PEG superstructures have been confirmed to effectively eliminate tumor in vitro and in vivo with negligible long-term toxicities, offering them great potential to act as theranostic platforms for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Ying Zhao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun 130022, China. .,University of Science and Technology of China, Hefei 230026, China
| | - Yang Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun 130022, China. .,University of Science and Technology of China, Hefei 230026, China
| | - Qishun Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jianhua Liu
- The second hospital of Jilin University, Changchun 130041, China.
| | - Songtao Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun 130022, China.
| | - Tianqi Zhang
- The second hospital of Jilin University, Changchun 130041, China.
| | - Daguang Wang
- Department of Gastric and Colorectal Surgery, the First Hospital, Jilin University, Changchun 130021, China
| | - Yinghui Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun 130022, China.
| | - Longhai Jin
- The second hospital of Jilin University, Changchun 130041, China.
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun 130022, China. .,University of Science and Technology of China, Hefei 230026, China.,Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|