1
|
Bansode N, Verget J, Barthélémy P. Light-modulation of gel stiffness: a glyconucleoside based bolaamphiphile as a photo-cleavable low molecular weight gelator. SOFT MATTER 2023; 19:6867-6870. [PMID: 37646228 DOI: 10.1039/d3sm00766a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Photo-cleavable glyconucleoside bolaamphiphiles containing a nitrophenyl unit feature gelation abilities in aqueous media. The stiffness of the resulting gels can be modulated upon light irradiation thanks to the photocleavage reaction of nitrophenyl moieties.
Collapse
Affiliation(s)
- Nitin Bansode
- University of Bordeaux, INSERM U1212, UMR CNRS 5320, F-33076 Bordeaux, France.
| | - Julien Verget
- University of Bordeaux, INSERM U1212, UMR CNRS 5320, F-33076 Bordeaux, France.
| | - Philippe Barthélémy
- University of Bordeaux, INSERM U1212, UMR CNRS 5320, F-33076 Bordeaux, France.
| |
Collapse
|
2
|
Hudait N, Karmakar A, Basu A, Kar B, Bhuyan S, Chhetri K, Kundu S, Gopal Roy B, Sengupta J. Transglycosylation Reaction: Synthesis and Supramolecular Study of Carbohydrate‐Cased
C
2
‐Symmetric 20‐ and 22‐Membered Macrocyclic Dinucleosides. ChemistrySelect 2023. [DOI: 10.1002/slct.202204311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Nandagopal Hudait
- Department of Chemistry West Bengal State University 700126 Barasat Kolkata India
| | - Arun Karmakar
- Electrochemical Process Engineering Division CSIR-CECRI 630003 Karaikudi India
| | - Arpan Basu
- Department of Chemistry West Bengal State University 700126 Barasat Kolkata, India
| | - Binoy Kar
- Department of Chemistry School of Advanced Science Vellore Institute of Technology 632014 Vellore Tamil Nadu India
| | - Samuzal Bhuyan
- Department of Chemistry Sikkim University 737102 Gangtok India
| | - Karan Chhetri
- Department of Chemistry Sikkim University 737102 Gangtok India
| | - Subrata Kundu
- Electrochemical Process Engineering Division CSIR-CECRI 630003 Karaikudi India
| | - Biswajit Gopal Roy
- Department of Chemistry Sikkim University 737102 Gangtok India
- Department of Chemistry Sikkim University 737102 Gangtok India
| | - Jhimli Sengupta
- Department of Chemistry West Bengal State University 700126 Barasat Kolkata India
- Department of Chemistry West Bengal State University 700126 Barasat Kolkata, India
- Department of Chemistry School of Advanced Science Vellore Institute of Technology 632014 Vellore Tamil Nadu India
| |
Collapse
|
3
|
Vemuri GN, Hughes JR, Iovine PM. Synthesis and characterization of terpene-derived cationic bolaamphiphiles. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Ghosh A, Dubey SK, Patra M, Mandal J, Ghosh NN, Das P, Bhowmick A, Sarkar K, Mukherjee S, Saha R, Bhattacharjee S. Solvent‐ and Substrate‐Induced Chiroptical Inversion in Amphiphilic, Biocompatible Glycoconjugate Supramolecules: Shape‐Persistent Gelation, Self‐Healing, and Antibacterial Activity. Chemistry 2022; 28:e202201621. [DOI: 10.1002/chem.202201621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Angshuman Ghosh
- Department of Chemistry Kazi Nazrul University Asansol 713340 West Bengal India
- TCG Lifescience, Block BN Sector V Saltlake Kolkata 700156 West Bengal India
| | - Soumen Kumar Dubey
- Department of Chemistry Kazi Nazrul University Asansol 713340 West Bengal India
| | - Maxcimilan Patra
- Department of Chemistry Kazi Nazrul University Asansol 713340 West Bengal India
| | - Jishu Mandal
- CIF Biophysical Laboratory CSIR-Indian Institute of Chemical Biology Jadavpur Kolkata 700032 West Bengal India
| | - Narendra Nath Ghosh
- Department of Chemistry University of Gour Banga Mokdumpur 732103 West Bengal India
| | - Priyanka Das
- Department of Microbiology University of Kalyani Kalyani, Nadia 741235 West Bengal India
| | - Arpita Bhowmick
- Department of Microbiology University of Kalyani Kalyani, Nadia 741235 West Bengal India
| | - Keka Sarkar
- Department of Microbiology University of Kalyani Kalyani, Nadia 741235 West Bengal India
| | - Suprabhat Mukherjee
- Department of Animal Science Kazi Nazrul University Asansol 713340 West Bengal India
| | - Rajat Saha
- Department of Chemistry Kazi Nazrul University Asansol 713340 West Bengal India
| | | |
Collapse
|
5
|
Zhao Y, Liu Y, Dai Y, Yang L, Chen G. Application of 3D Bioprinting in Urology. MICROMACHINES 2022; 13:mi13071073. [PMID: 35888890 PMCID: PMC9321242 DOI: 10.3390/mi13071073] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 12/11/2022]
Abstract
Tissue engineering is an emerging field to create functional tissue components and whole organs. The structural and functional defects caused by congenital malformation, trauma, inflammation or tumor are still the major clinical challenges facing modern urology, and the current treatment has not achieved the expected results. Recently, 3D bioprinting has gained attention for its ability to create highly specialized tissue models using biological materials, bridging the gap between artificially engineered and natural tissue structures. This paper reviews the research progress, application prospects and current challenges of 3D bioprinting in urology tissue engineering.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Urology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, China; (Y.Z.); (Y.D.)
- Department of Public Health Laboratory Sciences, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, China
| | - Yuebai Liu
- Department of Education and Training, Sichuan Cancer Hospital, Chengdu 610000, China;
| | - Yi Dai
- Department of Urology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, China; (Y.Z.); (Y.D.)
| | - Luo Yang
- Department of Urology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, China; (Y.Z.); (Y.D.)
- Correspondence: (L.Y.); (G.C.); Tel.: +86-1-820-288-8984 (G.C.)
| | - Guo Chen
- Department of Urology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, China; (Y.Z.); (Y.D.)
- Laboratory of Reconstructive Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610000, China
- Correspondence: (L.Y.); (G.C.); Tel.: +86-1-820-288-8984 (G.C.)
| |
Collapse
|
6
|
Saji VS. Recent Updates on Supramolecular-Based Drug Delivery - Macrocycles and Supramolecular Gels. CHEM REC 2022; 22:e202200053. [PMID: 35510981 DOI: 10.1002/tcr.202200053] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/05/2022] [Indexed: 11/09/2022]
Abstract
Supramolecules-based drug delivery has attracted significant recent research attention as it could enhance drug solubility, retention time, targeting, and stimuli responsiveness. Among the different supramolecules and assemblies, the macrocycles and the supramolecular hydrogels are the two important categories investigated to a greater extent. Here, we provide the most recent advancements in these categories. Under macrocycles, reports on drug delivery by cyclodextrins, cucurbiturils, calixarenes/pillararenes, crown ethers and porphyrins are detailed. The second category discusses the supramolecular hydrogels of macrocycles/polymers and low molecular weight gelators. The updated information provided could be helpful to advance R & D in this vital area.
Collapse
Affiliation(s)
- Viswanathan S Saji
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
7
|
Zhang Z, Hao G, Liu C, Fu J, Hu D, Rong J, Yang X. Recent progress in the preparation, chemical interactions and applications of biocompatible polysaccharide-protein nanogel carriers. Food Res Int 2021; 147:110564. [PMID: 34399540 DOI: 10.1016/j.foodres.2021.110564] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 06/21/2021] [Accepted: 06/27/2021] [Indexed: 12/12/2022]
Abstract
Nanogel carriers are rapidly emerged as a major delivery strategy in the fields of food, biology and medicine for small particle size, excellent solubility, high loading, and controlled release. Natural polysaccharides and proteins are selected for the preparation of biocompatible, biodegradable, low toxic, and less immunogenic nanogels. Different polysaccharides and proteins form complex nanogels through different interaction forces (e.g., electrostatic interaction and hydrophobic interaction). The present review pursues three aims: 1) to introduce several well-known dietary polysaccharides (chitosan, dextran and alginate) and proteins (whey protein and lysozyme); 2) to discuss the types, preparation methods, chemical interactions and properties of various biocompatible complex carriers; 3) to present the application and prospect of polysaccharide-protein complex in bioactive ingredient delivery, nutrient encapsulation and flavor protection. We expect that the integration with nano-intelligent technology will improve the functional ingredient loading, recognition specificity and controlled release capabilities of polysaccharide-protein nanocomposites to generate new intelligent nanogels in the field of food industry in the future.
Collapse
Affiliation(s)
- Zhong Zhang
- Shaanxi Engineering Laboratory for Food Green Processing Safety Control, Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, Engineering Research Center of High Value Utilization of Western Fruit Resources and College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China; School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong
| | - Guoying Hao
- Shaanxi Engineering Laboratory for Food Green Processing Safety Control, Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, Engineering Research Center of High Value Utilization of Western Fruit Resources and College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Chen Liu
- Shaanxi Engineering Laboratory for Food Green Processing Safety Control, Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, Engineering Research Center of High Value Utilization of Western Fruit Resources and College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Junqing Fu
- Shandong Institute for Food and Drug Control, Ji'nan, Shandong 250101, China
| | - Dan Hu
- Shaanxi Engineering Laboratory for Food Green Processing Safety Control, Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, Engineering Research Center of High Value Utilization of Western Fruit Resources and College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Jianhui Rong
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong.
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing Safety Control, Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, Engineering Research Center of High Value Utilization of Western Fruit Resources and College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
8
|
Localized Enzyme-Assisted Self-Assembly in the Presence of Hyaluronic Acid for Hybrid Supramolecular Hydrogel Coating. Polymers (Basel) 2021; 13:polym13111793. [PMID: 34072331 PMCID: PMC8198348 DOI: 10.3390/polym13111793] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 05/25/2021] [Indexed: 11/30/2022] Open
Abstract
Hydrogel coating is highly suitable in biomaterial design. It provides biocompatibility and avoids protein adsorption leading to inflammation and rejection of implants. Moreover, hydrogels can be loaded with biologically active compounds. In this field, hyaluronic acid has been largely studied as an additional component since this polysaccharide is naturally present in extracellular matrix. Strategies to direct hydrogelation processes exclusively from the surface using a fully biocompatible approach are rare. Herein we have applied the concept of localized enzyme-assisted self-assembly to direct supramolecular hydrogels in the presence of HA. Based on electronic and fluorescent confocal microscopy, rheological measurements and cell culture investigations, this work highlights the following aspects: (i) the possibility to control the thickness of peptide-based hydrogels at the micrometer scale (18–41 µm) through the proportion of HA (2, 5 or 10 mg/mL); (ii) the structure of the self-assembled peptide nanofibrous network is affected by the growing amount of HA which induces the collapse of nanofibers leading to large assembled microstructures underpinning the supramolecular hydrogel matrix; (iii) this changing internal architecture induces a decrease of the elastic modulus from 2 to 0.2 kPa when concentration of HA is increasing; (iv) concomitantly, the presence of HA in supramolecular hydrogel coatings is suitable for cell viability and adhesion of NIH 3T3 fibroblasts.
Collapse
|
9
|
Morris J, Bietsch J, Bashaw K, Wang G. Recently Developed Carbohydrate Based Gelators and Their Applications. Gels 2021; 7:24. [PMID: 33652820 PMCID: PMC8006029 DOI: 10.3390/gels7010024] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/13/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
Carbohydrate based low molecular weight gelators have been an intense subject of study over the past decade. The self-assembling systems built from natural products have high significance as biocompatible materials and renewable resources. The versatile structures available from naturally existing monosaccharides have enriched the molecular libraries that can be used for the construction of gelators. The bottom-up strategy in designing low molecular weight gelators (LMWGs) for a variety of applications has been adopted by many researchers. Rational design, along with some serendipitous discoveries, has resulted in multiple classes of molecular gelators. This review covers the literature from 2017-2020 on monosaccharide based gelators, including common hexoses, pentoses, along with some disaccharides and their derivatives. The structure-based design and structure to gelation property relationships are reviewed first, followed by stimuli-responsive gelators. The last section focuses on the applications of the sugar based gelators, including their utilization in environmental remediation, ion sensing, catalysis, drug delivery and 3D-printing. We will also review the available LMWGs and their structure correlations to the desired properties for different applications. This review aims at elucidating the design principles and structural features that are pertinent to various applications and hope to provide certain guidelines for researchers that are working at the interface of chemistry, biochemistry, and materials science.
Collapse
Affiliation(s)
| | | | | | - Guijun Wang
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA; (J.M.); (J.B.); (K.B.)
| |
Collapse
|
10
|
Hughes JR, Miller AS, Wallace CE, Vemuri GN, Iovine PM. Biomedically Relevant Applications of Bolaamphiphiles and Bolaamphiphile-Containing Materials. Front Chem 2021; 8:604151. [PMID: 33553103 PMCID: PMC7855593 DOI: 10.3389/fchem.2020.604151] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/15/2020] [Indexed: 12/28/2022] Open
Abstract
Bolaamphiphiles (BAs) are structurally segmented molecules with rich assembly characteristics and diverse physical properties. Interest in BAs as standalone active agents or as constituents of more complex therapeutic formulations has increased substantially in recent years. The preorganized amphiphilicity of BAs allows for a range of biological activities including applications that rely on multivalency. This review summarizes BA-related research in biomedically relevant areas. In particular, we review BA-related literature in four areas: gene delivery, antimicrobial materials, hydrogels, and prodrugs. We also discuss several distinguishing characteristics of BAs that impact their utility as biomedically relevant compounds.
Collapse
Affiliation(s)
| | | | | | | | - Peter M. Iovine
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, CA, United States
| |
Collapse
|
11
|
Wagalgave SM, Aljabri MD, Bhamidipati K, Shejule DA, Nadimetla DN, Al Kobaisi M, Puvvada N, Bhosale SV, Bhosale SV. Characteristics of the pH-regulated aggregation-induced enhanced emission (AIEE) and nanostructure orchestrate via self-assembly of naphthalenediimide–tartaric acid bola-amphiphile: role in cellular uptake. NEW J CHEM 2021. [DOI: 10.1039/d0nj05845a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A naphthalene diimide–tartaric acid conjugate was successfully synthesized, and the influence of tartaric acid on the self-assembly of the NDI–TA scaffold was explored.
Collapse
Affiliation(s)
- Sopan M. Wagalgave
- Polymers and Functional Materials Division CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
- Ghaziabad-201002
| | - Mahmood D. Aljabri
- School of Science, RMIT University, GPO Box 2476, Melbourne
- Victoria
- Australia
| | - Keerti Bhamidipati
- Academy of Scientific and Innovative Research (AcSIR)
- Ghaziabad-201002
- India
- Applied Biology Division CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
| | - Deepak A. Shejule
- Polymers and Functional Materials Division CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
| | - Dinesh N. Nadimetla
- Applied Biology Division CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
| | - Mohammad Al Kobaisi
- School of Science, RMIT University, GPO Box 2476, Melbourne
- Victoria
- Australia
| | - Nagaprasad Puvvada
- Academy of Scientific and Innovative Research (AcSIR)
- Ghaziabad-201002
- India
- Applied Biology Division CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
| | - Sidhanath V. Bhosale
- Polymers and Functional Materials Division CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
- Ghaziabad-201002
| | | |
Collapse
|
12
|
Blayo C, Kelly EA, Houston JE, Khunti N, Cowieson NP, Evans RC. Light-responsive self-assembly of a cationic azobenzene surfactant at high concentration. SOFT MATTER 2020; 16:9183-9187. [PMID: 33001130 DOI: 10.1039/d0sm01512a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The formation of high-concentration mesophases by a cationic azobenzene photosurfactant is described for the first time. Using a combination of polarised optical microscopy and small-angle X-ray scattering, optically anisotropic, self-assembled structures with long-range order are reported. The mesophases are disrupted or lost upon UV irradiation.
Collapse
Affiliation(s)
- Camille Blayo
- School of Chemistry, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Elaine A Kelly
- Department of Materials Science and Metallurgy, 27 Charles Babbage Road, CB3 0FS Cambridge, UK.
| | - Judith E Houston
- European Spallation Source (ESS), Odarslövsvägen 113, 22592 Lund, Sweden
| | - Nikul Khunti
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Nathan P Cowieson
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Rachel C Evans
- Department of Materials Science and Metallurgy, 27 Charles Babbage Road, CB3 0FS Cambridge, UK.
| |
Collapse
|
13
|
Carayon I, Gaubert A, Mousli Y, Philippe B. Electro-responsive hydrogels: macromolecular and supramolecular approaches in the biomedical field. Biomater Sci 2020; 8:5589-5600. [PMID: 32996479 DOI: 10.1039/d0bm01268h] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hydrogels are soft materials of the utmost importance in the biomedical and healthcare fields. Two approaches can be considered to obtain such biomaterials: the macromolecular one and the supramolecular one. In the first, the chemical gel is based on crosslinking while in the second the physical hydrogel is stabilized thanks to noncovalent interactions. Recently, new trends rely on smart devices able to modify their physico-chemical properties under stimulation. Such stimuli-responsive systems can react to internal (i.e. pH, redox potential, enzyme, etc.) or external (i.e. magnetic field, light, electric field, etc.) triggers leading to smart drug release and drug delivery systems, 3D scaffolds or biosensors. Even if some stimuli-responsive biomaterials are currently widely studied, other ones represent a real challenge. Among them, electro-responsive hydrogels, especially obtained via supramolecular approach, are under-developped leaving room for improvement. Indeed, currently known macromolecular electro-responsive systems are reaching some limitations related to their chemical composition, physicochemical properties, mechanical strength, processing technologies, etc. In contrast, the interest for supramolecular hydrogels has risen for the past few years suggesting that they may provide new solutions as electro-responsive soft materials. In this short review, we give a recent non exhaustive survey on macromolecular and supramolecular approaches for electro-responsive hydrogels in the biomedical field.
Collapse
Affiliation(s)
- Iga Carayon
- University of Bordeaux, INSERM U1212, UMR CNRS 5320, F-33076 Bordeaux, France.
| | | | | | | |
Collapse
|