1
|
Sain S, Ramesh M, Bhagavath KK, Govindaraju T. Enzyme-induced liquid-to-solid phase transition of a mitochondria-targeted AIEgen in cancer theranostics. MATERIALS HORIZONS 2025. [PMID: 39866150 DOI: 10.1039/d4mh01692k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Enzyme-instructed self-assembly (EISA) is a promising approach to anti-cancer therapeutics due to its precise targeting and unique cell death mechanism. In this study, we introduce a small molecule, DN6, which undergoes nitroreductase (NTR)-responsive liquid-liquid phase separation (LLPS) followed by a liquid-to-solid phase transition (LST) through a gel-like intermediate state, resulting in the formation of nanoaggregates with spatiotemporal control. The reduced form of DN6 (DN6R), owing to its aggregation-induced emission (AIE) and mitochondria-targeting capabilities, has been employed for organelle-specific imaging of tumor hypoxia. The red-emissive DN6R nanoaggregates in situ generated by NTR induce mitochondrial damage and oxidative stress, culminating in apoptosis in cancer cells and spheroids. The organelle-specific targeting, visualization, and therapeutic outcomes achieved by leveraging LST of NTR-responsive AIEgenic DN6 render it as a promising agent for cancer theranostics.
Collapse
Affiliation(s)
- Shreyasri Sain
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru 560064, Karnataka, India.
| | - Madhu Ramesh
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru 560064, Karnataka, India.
| | - Krithi K Bhagavath
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru 560064, Karnataka, India.
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru 560064, Karnataka, India.
| |
Collapse
|
2
|
Zhou Y, Yang X, Zhang J, Xu S, Yan M. A near-infrared fluorescence probe with large Stokes shift for selectively monitoring nitroreductase in living cells and mouse tumor models. Talanta 2024; 274:125976. [PMID: 38579417 DOI: 10.1016/j.talanta.2024.125976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/07/2024]
Abstract
Hypoxia is commonly regarded as a typical feature of solid tumors, which originates from the insufficient supply of oxygen. Herein, the development of an efficient method for assessing hypoxia levels in tumors is strongly desirable. Nitroreductase (NTR) is an overexpressed reductase in the solid tumors, has been served as a potential biomarker to evaluate the degrees of hypoxia. In this work, we elaborately synthesized a new near-infrared (NIR) fluorescence probe (MR) to monitor NTR activity for assessment of hypoxia levels in living cells and in tumors. Upon exposure of NTR, the nitro-unit of MR could be selectively reduced to amino-moiety with the help of nicotinamide adenine dinucleotide. Moreover, the obtained fluorophore emitted a prominent NIR fluorescence, because it possessed a classical "push-pull" structure. The MR displayed several distinguished characters toward NTR, including intense NIR fluorescent signals, large Stokes shift, high selectivity and low limit of detection (46 ng/mL). Furthermore, cellular confocal fluorescence imaging results validated that the MR had potential of detecting NTR levels in hypoxic cells. Significantly, using the MR, the elevated of NTR levels were successfully visualized in the tumor-bearing mouse models. Therefore, this detecting platform based on this probe may be tactfully constructed for monitoring the variations of NTR and estimating the degrees of hypoxia in tumors.
Collapse
Affiliation(s)
- Yongqing Zhou
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| | - Xiaofeng Yang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Jing Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Shuai Xu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Mei Yan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China; Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan 250022, People's Republic of China.
| |
Collapse
|
3
|
Michel L, Auvray M, Askenatzis L, Badet-Denisot MA, Bignon J, Durand P, Mahuteau-Betzer F, Chevalier A. Visualization of an Endogenous Mitochondrial Azoreductase Activity under Normoxic Conditions Using a Naphthalimide Azo-Based Fluorogenic Probe. Anal Chem 2024; 96:1774-1780. [PMID: 38230524 DOI: 10.1021/acs.analchem.3c05030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
In this paper, we demonstrate the existence of an endogenous mitochondrial azoreductase (AzoR) activity that can induce the cleavage of N═N double bonds of azobenzene compounds under normoxic conditions. To this end, 100% OFF-ON azo-based fluorogenic probes derived from 4-amino-1,8-naphthalimide fluorophores were synthesized and evaluated. The in vitro study conducted with other endogenous reducing agents of the cell, including reductases, demonstrated both the efficacy and the selectivity of the probe for AzoR. Confocal experiments with the probe revealed an AzoR activity in the mitochondria of living cells under normal oxygenation conditions, and we were able to demonstrate that this endogenous AzoR activity appears to be expressed at different levels across different cell lines. This discovery provides crucial information for our understanding of the biochemical processes occurring within the mitochondria. It thus contributes to a better understanding of its function, which is implicated in numerous pathologies.
Collapse
Affiliation(s)
- Laurane Michel
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Marie Auvray
- CNRS UMR 9187, Inserm U1196 Chemistry and Modeling for the Biology of Cancer Institut Curie,Université PSL, 91400 Orsay, France
- CNRS UMR 9187, Inserm U1196 Chemistry and Modeling for the Biology of Cancer, Université Paris-Saclay, 91400 Orsay, France
| | - Laurie Askenatzis
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Marie-Ange Badet-Denisot
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Jérôme Bignon
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Philippe Durand
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Florence Mahuteau-Betzer
- CNRS UMR 9187, Inserm U1196 Chemistry and Modeling for the Biology of Cancer Institut Curie,Université PSL, 91400 Orsay, France
- CNRS UMR 9187, Inserm U1196 Chemistry and Modeling for the Biology of Cancer, Université Paris-Saclay, 91400 Orsay, France
| | - Arnaud Chevalier
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, UPR 2301, 91198 Gif-sur-Yvette, France
| |
Collapse
|
4
|
Bai W, Li Y, Zhao L, Li R, Geng J, Lu Y, Zhao Y, Wang J. Rational design of a ratiometric fluorescent probe for imaging lysosomal nitroreductase activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123032. [PMID: 37356386 DOI: 10.1016/j.saa.2023.123032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/22/2023] [Accepted: 06/15/2023] [Indexed: 06/27/2023]
Abstract
Overexpressed nitroreductase (NTR) is often utilized to evaluate the hypoxic degree in tumor tissues, thus it is of great importance to develop high selective and efficient optical method to detect NTR. The dynamic fusion and function of lysosome promoted us to explore the possible appearance of NTR inside this organelle and to probe its behavior in a cellular context. In this work, a ratiometric fluorescent probe based on an extended π-π conjugation of a triphenylamine unit was designed for NTR detection and lysosomes imaging. The dual-emission mechanism of the probe in the presence of catalytic NTR was confirmed by theoretical study. The structure-function relationship between probe and NTR was revealed by docking calculations, suggesting a suitable structural and spatial match of them. The photophysical studies showed the probe had high selectivity, rapid response and a wide pH range towards NTR. MTT assay indicated the probe had low cytotoxicity in both normal (HUVEC) and tumor (MCF-7) cells. Furthermore, the inverse fluorescent imaging results confirmed the probe was NTR-active and exhibited time- and concentration-dependent fluorescence signals. In addition, the relatively high Pearson's correlation coefficient (0.99 in HepG2 and 0.97 in MCF-7 cells, compared to Lyso-Tracker Red) demonstrated the probe had excellent lysosomes colocalization. This study illustrates a ratiometric detection of NTR agent for lysosomes fluorescent imaging, which may provide a novel insight in molecular design.
Collapse
Affiliation(s)
- Wenjun Bai
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Yixuan Li
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, China
| | - Li Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Ruxin Li
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Jiahou Geng
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Yang Lu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China.
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China; Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, China
| | - Jinhui Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China; Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, China.
| |
Collapse
|
5
|
Yan J, Wang K, Gui L, Liu X, Ji Y, Lin J, Luo M, Xu H, Lv J, Tan F, Lin L, Yuan Z. Diagnosing Orthotopic Lung Tumor Using a NTR-Activatable Near-Infrared Fluorescent Probe by Tracheal Inhalation. Anal Chem 2023; 95:14402-14412. [PMID: 37698361 DOI: 10.1021/acs.analchem.3c02760] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Nitroreductase (NTR) is an enzyme that is upregulated under tumor-depleted oxygen conditions. The majority of studies have been conducted on NTR, but many existing fluorescent imaging tools for monitoring NTR inevitably suffer from weak targeting, low sensitivity, and simple tumor models. Research on diagnosing lung tumors has been very popular in recent years, but targeting assays in orthotopic lung tumors is still of great research value, as such models better mimic the reality of cancer in the organism. Here, we developed a novel near-infrared (NIR) fluorescent probe IR-ABS that jointly targets NTR and carbonic anhydrase IX (CAIX). IR-ABS has excellent sensitivity and selectivity and shows exceptional NTR response in spectroscopic tests. The measurements ensured that this probe has good biosafety in both cells and mice. A better NTR response was found in hypoxic tumor cells at the cellular level, distinguishing tumor cells from normal cells. In vivo experiments demonstrated that IR-ABS achieves a hypoxic response at the zebrafish level and enables rapid and accurate tumor margin distinguishment in different mouse tumor models. More importantly, we successfully applied IR-ABS for NTR detection in orthotopic lung tumor models, further combined with tracheal inhalation drug delivery to improve targeting. To the best of our knowledge, we present for the first time a near-infrared imaging method for targeting lung cancerous tumor in situ via tracheal inhalation drug delivery, in contrast to the reported literature. This NIR fluorescence diagnostic strategy for targeting orthotopic lung cancer holds exciting potential for clinical aid in cancer diagnosis.
Collapse
Affiliation(s)
- Jun Yan
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China
| | - Kaizhen Wang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China
| | - Lijuan Gui
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China
| | - Xian Liu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, 11 Yuk Choi Road, Hung Hom, Kowloon, 999077 Hong Kong, China
| | - Yingying Ji
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China
| | - Jingjing Lin
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China
| | - Man Luo
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China
| | - Hong Xu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China
| | - Jingxuan Lv
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China
| | - Fang Tan
- Third Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Wuhua District, 650000 Kunming, Yunnan Province, China
| | - Liangting Lin
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, 11 Yuk Choi Road, Hung Hom, Kowloon, 999077 Hong Kong, China
| | - Zhenwei Yuan
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing 210009, China
| |
Collapse
|
6
|
Sun L, Dong X, Gao J, Zhu T, Sun J, Dong C, Wang R, Gu X, Zhao C. Precise Spatiotemporal Identification of Mitochondrial H 2S Fluctuations through Exploiting an On-Demand Photoactivated Probe. Anal Chem 2023; 95:14288-14296. [PMID: 37697825 DOI: 10.1021/acs.analchem.3c02509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Various signal molecules participate in complex biological processes in mitochondria. However, most currently available probes have problems in elucidating the functions of these active species in mitochondria due to the inability to light up these probes exclusively at the desired mitochondrial location, thereby compromising the specificity and accuracy. In this study, we present an on-demand photoactivation approach to the molecular design of optimized probes for precise spatiotemporal identification of mitochondrial H2S fluctuations. The designed probe with native yellow fluorescence can monitor the process into mitochondria but maintains nonfluorescent response to H2S during cellular delivery, providing the accurate timing of accumulation in mitochondria. On-demand photoactivation exclusively at the desired mitochondrial location affords a significant aggregation-enhanced and emissive response to H2S with lighting up red fluorescence at 690 nm, which is the only way to get such an emissive phenomenon and greatly improves the specificity and accuracy of targeting mitochondrial H2S. By using this photocontrolled fluorescence responsiveness to H2S, precise spatiotemporal identification of mitochondrial H2S fluctuations is successfully performed. Our work could facilitate advances toward interrogating the physiological and pathological consequences of mitochondrial H2S in various biological events.
Collapse
Affiliation(s)
- Lixin Sun
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xuemei Dong
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jinzhu Gao
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Tianli Zhu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jie Sun
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Chengjun Dong
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Rongchen Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xianfeng Gu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Chunchang Zhao
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
7
|
Gai L, Liu Y, Zhou Z, Lu H, Guo Z. BODIPY-based probes for hypoxic environments. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
8
|
Crawford H, Dimitriadi M, Bassin J, Cook MT, Abelha TF, Calvo‐Castro J. Mitochondrial Targeting and Imaging with Small Organic Conjugated Fluorophores: A Review. Chemistry 2022; 28:e202202366. [PMID: 36121738 PMCID: PMC10092527 DOI: 10.1002/chem.202202366] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Indexed: 12/30/2022]
Abstract
The last decade has seen an increasingly large number of studies reporting on the development of novel small organic conjugated systems for mitochondrial imaging exploiting optical signal transduction pathways. Mitochondria are known to play a critical role in a number of key biological processes, including cellular metabolism. Importantly, irregularities on their working function are nowadays understood to be intimately linked to a range of clinical conditions, highlighting the importance of targeting mitochondria for therapeutic benefits. In this work we carry out an in-depth evaluation on the progress to date in the field to pave the way for the realization of superior alternatives to those currently existing. The manuscript is structured by commonly used chemical scaffolds and comprehensively covers key aspects factored in design strategies such as synthetic approaches as well as photophysical and biological characterization, to foster collaborative work among organic and physical chemists as well as cell biologists.
Collapse
Affiliation(s)
- Hannah Crawford
- School of Life and Medical SciencesUniversity of HertfordshireAL109ABHatfieldUK
| | - Maria Dimitriadi
- School of Life and Medical SciencesUniversity of HertfordshireAL109ABHatfieldUK
| | - Jatinder Bassin
- School of Life and Medical SciencesUniversity of HertfordshireAL109ABHatfieldUK
| | - Michael T. Cook
- School of Life and Medical SciencesUniversity of HertfordshireAL109ABHatfieldUK
| | - Thais Fedatto Abelha
- Department of Pharmacology, Toxicology and Therapeutic ChemistryFaculty of Pharmacy and Food ScienceUniversity of Barcelona08028BarcelonaSpain
- Institute of Nanoscience and NanotechnologyUniversity of Barcelona (IN2UB)08028BarcelonaSpain
| | - Jesus Calvo‐Castro
- School of Life and Medical SciencesUniversity of HertfordshireAL109ABHatfieldUK
| |
Collapse
|
9
|
Tang Z, Yan Z, Gong L, Zhang L, Yin X, Sun J, Wu K, Yang W, Fan G, Li Y, Jiang H. Precise Monitoring and Assessing Treatment Response of Sepsis-Induced Acute Lung Hypoxia with a Nitroreductase-Activated Golgi-Targetable Fluorescent Probe. Anal Chem 2022; 94:14778-14784. [PMID: 36223488 DOI: 10.1021/acs.analchem.2c03722] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sepsis-induced acute lung injury (ALI) is mostly attributed to an outbreak of reactive oxygen species (ROS), which makes leukocytes infiltrate into the lung and results in lung hypoxia. Nitroreductase (NTR) is significantly upregulated under hypoxia, which is commonly regarded as a potential biomarker for assessing sepsis-induced acute lung hypoxia. Increasing evidence shows that NTR in the Golgi apparatus could be induced in sepsis-induced ALI. Meanwhile, the prolyl hydroxylase (PHD) inhibitor (dimethyloxalylglycine, DMOG) attenuated sepsis-induced ALI through further increasing the level of Golgi NTR by improving hypoxia inducible factor-1α (HIF-1α) activity, but as yet, no Golgi-targetable probe has been developed for monitoring and assessing treatment response of sepsis-induced ALI. Herein, we report a Golgi-targetable probe, Gol-NTR, for monitoring and assessing treatment response of sepsis-induced ALI through mapping the generation of NTR. The probe displayed high sensitivity with a low detection limit of 54.8 ng/mL and good selectivity to NTR. In addition, due to the excellent characteristics of Golgi-targetable, Gol-NTR was successfully applied in mapping the change of Golgi NTR in cells and zebrafish caused by various stimuli. Most importantly, the production of Golgi NTR in the sepsis-induced ALI and the PHD inhibitor (DMOG) against sepsis-induced ALI were visualized and precisely assessed for the first time with the assistance of Gol-NTR. The results demonstrated the practicability of Gol-NTR for the precise monitoring and assessing of the personalized treatment response of sepsis-induced ALI.
Collapse
Affiliation(s)
- Zhixin Tang
- Experimental Center, Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhi Yan
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lili Gong
- Experimental Center, Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ling Zhang
- Experimental Center, Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xuemiao Yin
- Advanced Research Institute for Multidisciplinary Science, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jian Sun
- Advanced Research Institute for Multidisciplinary Science, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Ke Wu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Wenjie Yang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Guanwei Fan
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.,First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yunlun Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Haiqiang Jiang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
10
|
Zhao J, Ma T, Chang B, Fang J. Recent Progress on NIR Fluorescent Probes for Enzymes. Molecules 2022; 27:molecules27185922. [PMID: 36144654 PMCID: PMC9503431 DOI: 10.3390/molecules27185922] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
The majority of diseases’ biomarkers are enzymes, and the regulation of enzymes is fundamental but crucial. Biological system disorders and diseases can result from abnormal enzymatic activity. Given the biological significance of enzymes, researchers have devised a plethora of tools to map the activity of particular enzymes in order to gain insight regarding their function and distribution. Near-infrared (NIR) fluorescence imaging studies on enzymes may help to better understand their roles in living systems due to their natural imaging advantages. We review the NIR fluorescent probe design strategies that have been attempted by researchers to develop NIR fluorescent sensors of enzymes, and these works have provided deep and intuitive insights into the study of enzymes in biological systems. The recent enzyme-activated NIR fluorescent probes and their applications in imaging are summarized, and the prospects and challenges of developing enzyme-activated NIR fluorescent probes are discussed.
Collapse
|
11
|
Xing X, Yang K, Li B, Tan S, Yi J, Li X, Pang E, Wang B, Song X, Lan M. Boron Dipyrromethene-Based Phototheranostics for Near Infrared Fluorescent and Photoacoustic Imaging-Guided Synchronous Photodynamic and Photothermal Therapy of Cancer. J Phys Chem Lett 2022; 13:7939-7946. [PMID: 35980815 DOI: 10.1021/acs.jpclett.2c02122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The regulation of photochemical properties of phototheranostics, especially the absorption, fluorescence, singlet oxygen (1O2) generation, and photothermal conversion efficiency, is a hot research topic. Here, we designed and synthesized four boron dipyrromethene (BODIPY) derivatives with high absorption coefficients and intense fluorescence in the near-infrared (NIR) region. The substituted electron-donating group significantly improved 1O2 generation and fluorescence of BODIPYs, whereas the electron-withdrawing group boosts photothermal conversion. These hydrophobic BODIPYs were further coated with DSPE-PEG-2000 to form water dispersible nanoparticles (NPs). Among these BODIPY NPs, the B-OMe-NPs with methoxyl substituted at the meso-position showed the highest 1O2 generation, a photothermal conversion efficiency of 66.5%, and an NIR fluorescence peak at 809 nm. In vitro and in vivo experiments demonstrated that B-OMe-NPs might be used for NIR fluorescent and photoacoustic imaging-guided photodynamic and photothermal therapy of cancer.
Collapse
Affiliation(s)
- Xuejian Xing
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Ke Yang
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Baoling Li
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Siyi Tan
- Huazhi Medical Laboratory Co., Ltd., 618 Heping Road, Changsha 410125, P.R. China
| | - Jianing Yi
- Surgical Department of Breast and Thyroid Gland, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha 410005, P. R. China
| | - Xiangcao Li
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - E Pang
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Benhua Wang
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Xiangzhi Song
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Minhuan Lan
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
12
|
Guo X, Tang B, Wu Q, Bu W, Zhang F, Yu C, Jiao L, Hao E. Engineering BODIPY-based near-infrared nanoparticles with large Stokes shifts and aggregation-induced emission characteristics for organelle specific bioimaging. J Mater Chem B 2022; 10:5612-5623. [PMID: 35802059 DOI: 10.1039/d2tb00921h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lipid droplets (LDs) and lysosomes, as two important subcellular organelles, play specific and indispensable roles in various cellular processes. The development of efficient LD- and lysosome-specific fluorescent bio-probes is of great importance. However, current commercial lipid droplet- (LD) and lysosome-specific fluorescent specific bio-probes often suffer from the aggregation-caused quenching (ACQ) effect, short absorption and emission wavelengths, poor photostability and low specificity. Herein, a typical ACQ luminogen BODIPY was directly conjugated to strong electron donating triarylamine units at its α-positions, giving near-infrared (NIR) fluorescent materials TPAB and 2TPAB with aggregation-induced emission (AIE). Both TPAB and 2TPAB nanoparticles were obtained by self-assembly, and showed NIR emissions, large Stokes shifts, good photostability and two-photon absorption. These nanoparticles presented remarkable bioimaging performances and were shown to specifically localize in LDs or lysosomes, respectively, depending on the number of triarylamine units attached. They have been successfully used to detect endogenous LD overproduction, and monitor abnormal activities of LDs/lysosomes, as well as real-time track the lipophagy process in cells. Their far NIR emission and two-photon excitation further supported their promising bioimaging application for lipid droplet tracking in liver tissue and live zebrafish larvae. Our work here enriches BODIPY based NIR AIE dyes and provides organelle specific bio-probes which are superior to currently used commercial ones.
Collapse
Affiliation(s)
- Xing Guo
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Bing Tang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Qinghua Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Weibin Bu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Fan Zhang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Changjiang Yu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| |
Collapse
|
13
|
Wang Y, Meng X, Ma A, Sun M, Jiao S, Wang C. Rhodol-derived turn-on fluorescent chemosensor for ultrasensitive detection of nitroreductase activity in bacteria and bioimaging in oral cancer cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 270:120836. [PMID: 34998052 DOI: 10.1016/j.saa.2021.120836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/29/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
The detection of intracellular nitroreductase (NTR) activity is important for the study of hypoxia in organisms. In the present study, a Rhodol-derived fluorescent chemosensor (Rhod-NO2) was synthesized in a one-step procedure. Rhod-NO2 exhibits 110-fold fluorescence enhancement in the presence of NTR. Moreover, Rhod-NO2 demonstrates high NTR selectivity and sensitivity (LOD, 0.6 ng/mL). The mode of Rhod-NO2 binding to NTR was also revealed by molecular docking. In addition, the reaction and luminescence mechanisms were evaluated by MS and TDDFT theoretical calculations, respectively. Finally, Rhod-NO2 was successfully applied to monitor NTR production during Escherichia coli (E. coli) growth, and to visually analyze NTR production in malignant oral cancer cells under hypoxia. Thus, Rhod-NO2 represents a new molecular tool to further understanding of the biological function of NTR.
Collapse
Affiliation(s)
- Yingyi Wang
- Hospital of Stomatology, Jilin University, Qinghua Road 1500, Changchun 130021, China
| | - Xiuping Meng
- Hospital of Stomatology, Jilin University, Qinghua Road 1500, Changchun 130021, China
| | - Ang Ma
- Hospital of Stomatology, Jilin University, Qinghua Road 1500, Changchun 130021, China
| | - Mengyao Sun
- Hospital of Stomatology, Jilin University, Qinghua Road 1500, Changchun 130021, China
| | - Shan Jiao
- Hospital of Stomatology, Jilin University, Qinghua Road 1500, Changchun 130021, China.
| | - Chengkun Wang
- Hospital of Stomatology, Jilin University, Qinghua Road 1500, Changchun 130021, China.
| |
Collapse
|
14
|
Liu Y, Teng L, Yin B, Meng H, Yin X, Huan S, Song G, Zhang XB. Chemical Design of Activatable Photoacoustic Probes for Precise Biomedical Applications. Chem Rev 2022; 122:6850-6918. [PMID: 35234464 DOI: 10.1021/acs.chemrev.1c00875] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Photoacoustic (PA) imaging technology, a three-dimensional hybrid imaging modality that integrates the advantage of optical and acoustic imaging, has great application prospects in molecular imaging due to its high imaging depth and resolution. To endow PA imaging with the ability for real-time molecular visualization and precise biomedical diagnosis, numerous activatable molecular PA probes which can specifically alter their PA intensities upon reacting with the targets or biological events of interest have been developed. This review highlights the recent developments of activatable PA probes for precise biomedical applications including molecular detection of the biotargets and imaging of the biological events. First, the generation mechanism of PA signals will be given, followed by a brief introduction to contrast agents used for PA probe design. Then we will particularly summarize the general design principles for the alteration of PA signals and activatable strategies for developing precise PA probes. Furthermore, we will give a detailed discussion of activatable PA probes in molecular detection and biomedical imaging applications in living systems. At last, the current challenges and outlooks of future PA probes will be discussed. We hope that this review will stimulate new ideas to explore the potentials of activatable PA probes for precise biomedical applications in the future.
Collapse
Affiliation(s)
- Yongchao Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Lili Teng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Baoli Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Hongmin Meng
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China
| | - Xia Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Shuangyan Huan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
15
|
Yang Y, Zhai H, Yuan J, Wang K, Zhang H. Recent Advances in Fluorescent Probes for Flavinase Activity: Design and Applications. Chem Asian J 2022; 17:e202200043. [PMID: 35174973 DOI: 10.1002/asia.202200043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/14/2022] [Indexed: 11/11/2022]
Abstract
Flavinases, including monoamine oxidase (MAO-A/MAO-B), quinone oxidoreductase (NQO1), thioredoxin reductase (TrxR), nitroreductase (NTR) and so on, are important redox enzymes in organisms. They are considered as biomarkers of cell energy metabolism and cell vitality. Importantly, their aberrant expression is related to various disease processes. Therefore, the accurate measurement of flavinase is useful for the early diagnosis of diseases, which has aroused great concern in the scientific community. Various methods are also available for the detection of flavinases, fluorescence probes are considered to be one of the best detection methods due to their easy and accurate sensing capability. This review aims to introduce the advances in the design and application of flavinase probes in the last five years. This study focuses on analyzing the design strategies and reaction mechanisms of flavinases fluorescent probes and discusses the current challenges, which will further advance the development of diagnostic and therapeutic approaches for flavinase-related diseases.
Collapse
Affiliation(s)
- Yiting Yang
- Henan Normal University School of Chemistry and Chemical Engineering, School of Chemistry and Chemical Engineering, CHINA
| | - Hongchen Zhai
- Henan Normal University School of Chemistry and Chemical Engineering, School of Chenistry and chemical Engineering, CHINA
| | - Jie Yuan
- Henan Normal University School of Chemistry and Chemical Engineering, School of Chemistry and Chemical Engineering, CHINA
| | - Kui Wang
- Henan Normal University School of Chemistry and Chemical Engineering, School of Chemistry and Chemical Engineering, CHINA
| | - Hua Zhang
- Henan Normal University, School of Chemistry and Chemical Engineering, 46 Jianshe Road, Muye Zone,, 453007, Xinxiang, CHINA
| |
Collapse
|
16
|
Xu J, Zai W, Ye Q, Zhang Q, Yi W, Wu J. A nitroreductase responsive and photoactivated fluorescent probe for dual-controlled tumor hypoxia imaging. RSC Adv 2022; 12:23796-23800. [PMID: 36093234 PMCID: PMC9396718 DOI: 10.1039/d2ra04004b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/11/2022] [Indexed: 12/03/2022] Open
Abstract
Tumor hypoxia has great importance in tumor progression and resistance to antitumor therapies. To precisely monitor tumor hypoxia, a controllable hypoxia imaging method is meaningful but still lacking. Herein, we develop a dual-controlled tumor hypoxia probe (TNB) by introducing a nitrophenol group and methyltetrazine group to the boron-dipyrromethene (BODIPY) dye. The fluorescence-quenching group nitrophenol is reduced to aminophenol by upregulated nitroreductase in hypoxic tumors, and the photocage methyltetrazine is cleaved by light irradiation. Hence the fluorescence of TNB is dual-controlled by hypoxia and photoactivation. We first evaluated TNB's potential for controllable hypoxia imaging in solution and tumor cells. The fluorescence of TNB under nitroreductase incubation and photoactivation increased more than 60 fold over that which was untreated or only treated with nitroreductase. Furthermore, results validate that TNB possesses photo-controllable activation features in tumor sections. We believe that the probe design based on enzyme and photoactivation responsiveness provides potential for spatiotemporal detection of other biomarkers. Tumor hypoxia has great importance in tumor progression and resistance to antitumor therapies.![]()
Collapse
Affiliation(s)
- Jialong Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Wenjing Zai
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Qingsong Ye
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Qingqing Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Wenqian Yi
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, School of Life Sciences, Nanjing University, Nanjing 210093, China
- Jiangsu Provincial Key Laboratory for Nano Technology, Nanjing University, Nanjing 210093, China
- Jiangsu R&D Platform for Controlled & Targeted Drug Delivery, Nanjing University, Nanjing 210093, China
- Institute of Drug R&D, Nanjing University, Nanjing 210093, China
| |
Collapse
|
17
|
Ji W, Tang X, Du W, Lu Y, Wang N, Wu Q, Wei W, Liu J, Yu H, Ma B, Li L, Huang W. Optical/electrochemical methods for detecting mitochondrial energy metabolism. Chem Soc Rev 2021; 51:71-127. [PMID: 34792041 DOI: 10.1039/d0cs01610a] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review highlights the biological importance of mitochondrial energy metabolism and the applications of multiple optical/electrochemical approaches to determine energy metabolites. Mitochondria, the main sites of oxidative phosphorylation and adenosine triphosphate (ATP) biosynthesis, provide the majority of energy required by aerobic cells for maintaining their physiological activity. They also participate in cell growth, differentiation, information transmission, and apoptosis. Multiple mitochondrial diseases, caused by internal or external factors, including oxidative stress, intense fluctuations of the ionic concentration, abnormal oxidative phosphorylation, changes in electron transport chain complex enzymes and mutations in mitochondrial DNA, can occur during mitochondrial energy metabolism. Therefore, developing accurate, sensitive, and specific methods for the in vivo and in vitro detection of mitochondrial energy metabolites is of great importance. In this review, we summarise the mitochondrial structure, functions, and crucial energy metabolic signalling pathways. The mechanism and applications of different optical/electrochemical methods are thoroughly reviewed. Finally, future research directions and challenges are proposed.
Collapse
Affiliation(s)
- Wenhui Ji
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Xiao Tang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Wei Du
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Yao Lu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Nanxiang Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Wei Wei
- Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Jie Liu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Haidong Yu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Bo Ma
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211800, China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China. .,Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.,The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China. .,Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.,The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China
| |
Collapse
|
18
|
Zhang X, Li X, Shi W, Ma H. Sensitive imaging of tumors using a nitroreductase-activated fluorescence probe in the NIR-II window. Chem Commun (Camb) 2021; 57:8174-8177. [PMID: 34318817 DOI: 10.1039/d1cc03232a] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A nitroreductase (NTR)-activated NIR-II fluorescence probe for tumor imaging is reported. The probe can emit fluorescence in the range of 900-1300 nm, and target hypoxic tumors with NTR overexpression, thus allowing for accurate delineation of tumor margins through deep penetration.
Collapse
Affiliation(s)
- Xiaofan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | | | | | | |
Collapse
|
19
|
Li X, Long C, Cui Y, Tao F, Yu X, Lin W. Charge-Dependent Strategy Enables a Single Fluorescent Probe to Study the Interaction Relationship between Mitochondria and Lipid Droplets. ACS Sens 2021; 6:1595-1603. [PMID: 33755435 DOI: 10.1021/acssensors.0c02677] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cooperation between organelles is essential to maintain the normal operation of the cell. A lipid droplet (LD), a dynamic organelle, is specialized in lipid storage and can interact physically with mitochondria in several cell types. However, an appropriate method for in situ studying the interaction relationships of mitochondria-LDs is still lacking. Herein, a charge-dependent strategy is proposed for the first time by considering adequately the charge difference between mitochondria and LDs. According to the novel strategy, we have developed a unique fluorescent probe Mito-LD based on the cyclization and ring-opening conversion. Mito-LD could simultaneously stain mitochondria and LDs and emit a red and green fluorescence, respectively. More importantly, with the probe Mito-LD, the in situ interaction relationships of mitochondria-LDs were investigated in detail from LD accumulation, mitochondrial dysfunction, lower environmental temperatures, and four aspects of apoptosis. The experimental results showed that mitochondria played an important role in LD accumulation, and the numbers and size of LDs would increase after mitochondrial dysfunction that may be due to excess liposomes. In addition, as an energy storage organelle, LDs played an important role in helping to coordinate mitochondrial energy supply in response to cold. In addition, the Mito-LD revealed that the polarity of mitochondria was higher than that of LDs. In a word, the probe Mito-LD could serve as a potential tool for further exploring mitochondria-LD interaction mechanisms, and importantly, the charge-dependent strategy is valuable for designing robust new probes in imaging multiple organelles.
Collapse
Affiliation(s)
- Xuechen Li
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Daxue Road 3501, Changqing District, Jinan 250353, P. R. China
| | - Chenyuan Long
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Daxue Road 3501, Changqing District, Jinan 250353, P. R. China
| | - Yuezhi Cui
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Daxue Road 3501, Changqing District, Jinan 250353, P. R. China
| | - Furong Tao
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Daxue Road 3501, Changqing District, Jinan 250353, P. R. China
| | - Xiaoqiang Yu
- Center of Bio and Micro/Nano Functional Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Weiying Lin
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| |
Collapse
|
20
|
Jia C, Zhang Y, Wang Y, Ji M. A fast-responsive fluorescent turn-on probe for nitroreductase imaging in living cells. RSC Adv 2021; 11:8516-8520. [PMID: 35423362 PMCID: PMC8695130 DOI: 10.1039/d0ra09512e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/08/2021] [Indexed: 11/21/2022] Open
Abstract
Nitroreductase (NTR) may be more active under the environment of hypoxic conditions, which are the distinctive features of the multiphase solid tumor. It is of great significance to effectively detect and monitor NTR in the living cells for the diagnosis of hypoxia in a tumor. Here, we synthesized a novel turn-on fluorescent probe NTR-NO2 based on a fused four-ring quinoxaline skeleton for NTR detection. The highly efficient probe can be easily synthesized. The probe NTR-NO2 showed satisfactory sensitivity and selectivity to NTR. Upon incubation with NTR, NTR-NO2 could successively undergo a nitro reduction reaction and then generate NTR-NH2 along with significant fluorescence enhancement (30 folds). Moreover, the fluorescent dye NTR-NH2 exhibits a large Stokes shift (Δλ = 111 nm) due to the intramolecular charge transfer (ICT) process. As a result, NTR-NO2 displayed a wide linear range (0–4.5 μg mL−1) and low detection limit (LOD = 58 ng mL−1) after responding to NTR. In addition, this probe was adopted for the detection of endogenous NTR within hypoxic HeLa cells. Probe NTR-NO2 was effectively reduced in the presence of NTR generating a highly fluorescent product.![]()
Collapse
Affiliation(s)
- Chengli Jia
- School of Biological Sciences and Medical Engineering, Southeast University Nanjing Jiangsu 210009 PR China +86-13851570005 +86-13851570005
| | - Yong Zhang
- School of Biological Sciences and Medical Engineering, Southeast University Nanjing Jiangsu 210009 PR China +86-13851570005 +86-13851570005
| | - Yuesong Wang
- School of Biological Sciences and Medical Engineering, Southeast University Nanjing Jiangsu 210009 PR China +86-13851570005 +86-13851570005
| | - Min Ji
- School of Biological Sciences and Medical Engineering, Southeast University Nanjing Jiangsu 210009 PR China +86-13851570005 +86-13851570005
| |
Collapse
|
21
|
Kim SJ, Yoon JW, Yoon SA, Lee MH. Ratiometric Fluorescence Assay for Nitroreductase Activity: Locked-Flavylium Fluorophore as a NTR-Sensitive Molecular Probe. Molecules 2021; 26:1088. [PMID: 33669590 PMCID: PMC7923055 DOI: 10.3390/molecules26041088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 11/29/2022] Open
Abstract
Nitroreductases belong to a member of flavin-containing enzymes that can reduce nitroaromatic compounds to amino derivatives with NADH as an electron donor. NTR activity is known to be elevated in the cancerous environment and is considered an advantageous target in therapeutic prodrugs for the treatment of cancer. Here, we developed a ratiometric fluorescent molecule for observing NTR activity in living cells. This can provide a selective and sensitive response to NTR with a distinct increase in fluorescence ratio (FI530/FI630) as well as color changes. We also found a significant increase in NTR activity in cervical cancer HeLa and lung cancer A549 cells compared to non-cancerous NIH3T3. We proposed that this new ratiometric fluorescent molecule could potentially be used as a NTR-sensitive molecular probe in the field of cancer diagnosis and treatment development related to NTR activity.
Collapse
Affiliation(s)
| | | | | | - Min Hee Lee
- Department of Chemistry, Sookmyung Women’s University, Seoul 04310, Korea; (S.J.K.); (J.W.Y.); (S.A.Y.)
| |
Collapse
|
22
|
Qi YL, Guo L, Chen LL, Yuan DD, Wang HR, Cao YY, Yang YS, Zhu HL. Two birds with one stone: a NIR fluorescent probe for mitochondrial protein imaging and its application in photodynamic therapy. J Mater Chem B 2021; 9:6068-6075. [PMID: 34286809 DOI: 10.1039/d1tb00881a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mitochondrial proteins, most of which are encoded in the nucleus and the rest of which are regulated by the mitochondrial genome, play pivotal roles in essential cellular functions. However, fluorescent probes that can be used for monitoring mitochondrial proteins have not yet been widely developed, thereby severely limiting the exploration of the functions of proteins in mitochondria. Towards this end, here we propose a near-infrared (NIR) fluorescence probe MPP to effectively illuminate the dynamic changes in mitochondrial proteins in live cells under oxidative stress, with excellent temporal and spatial resolution. Of particular importance, MPP extends the study of the pharmacology involved in apoptosis induced by anti-cancer drugs (hydroxycamptothecin (HCPT), epirubicin (Epi) and cyclophosphamide (CPA)) for the first time. Furthermore, employing a protein-activatable strategy, this probe could serve as an excellent phototherapeutic agent in photodynamic therapy (PDT). Finally, in vivo experiments suggest that this versatile probe can be used to image tumors in HeLa tumor-bearing mice for 24 h, which demonstrates that our probe could play a dual role as a robust phototherapeutic and imaging agent.
Collapse
Affiliation(s)
- Ya-Lin Qi
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, P. R. China.
| | - Long Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, P. R. China.
| | - Li-Li Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, P. R. China.
| | - Dan-Dan Yuan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, P. R. China.
| | - Hai-Rong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, P. R. China.
| | - Yu-Yao Cao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, P. R. China.
| | - Yu-Shun Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, P. R. China.
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, P. R. China.
| |
Collapse
|
23
|
Lv F, Guo X, Wu H, Li H, Tang B, Yu C, Hao E, Jiao L. Direct sulfonylation of BODIPY dyes with sodium sulfinates through oxidative radical hydrogen substitution at the α-position. Chem Commun (Camb) 2020; 56:15577-15580. [DOI: 10.1039/d0cc07259a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A series of α-sulfonated BODIPYs were efficiently synthesized from sodium sulfinates via a radical process, and were demonstrated as new fluorescent probes for selective biothiol detection.
Collapse
Affiliation(s)
- Fan Lv
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| | - Xing Guo
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| | - Hao Wu
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| | - Heng Li
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| | - Bing Tang
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| | - Changjiang Yu
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| |
Collapse
|
24
|
Gao J, Wang R, Zhu T, Tan J, Gu X, Zhao C. An electron-deficiency-based framework for NIR-II fluorescence probes. J Mater Chem B 2020; 8:9877-9880. [DOI: 10.1039/d0tb02120b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Increasing the electron withdrawing ability of substituents in monochlorinated BODIPY could vary the emission from the NIR-I to NIR-II region together with enhanced response rate, indicative of a promising approach for activatable NIR-II probes.
Collapse
Affiliation(s)
- Jinzhu Gao
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center
- Institute of Fine Chemicals
- School of Chemistry and Molecular Engineering
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- East China University of Science and Technology
| | - Rongchen Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center
- Institute of Fine Chemicals
- School of Chemistry and Molecular Engineering
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- East China University of Science and Technology
| | - Tianli Zhu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center
- Institute of Fine Chemicals
- School of Chemistry and Molecular Engineering
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- East China University of Science and Technology
| | - Jiahui Tan
- Department of Medicinal Chemistry
- School of Pharmacy
- Fudan University
- Shanghai
- P. R. China
| | - Xianfeng Gu
- Department of Medicinal Chemistry
- School of Pharmacy
- Fudan University
- Shanghai
- P. R. China
| | - Chunchang Zhao
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center
- Institute of Fine Chemicals
- School of Chemistry and Molecular Engineering
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- East China University of Science and Technology
| |
Collapse
|