1
|
Xu Y, Zhang S, Huang D, Wu X. Reactions of alkynes with C-S bond formation: recent developments. Org Biomol Chem 2024; 22:6443-6484. [PMID: 39041389 DOI: 10.1039/d4ob00804a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Alkynes are important in organic synthesis. This review mainly focuses on recent advances (2013-2023) on alkynes with C-S bond formation, based on more than 30 types of sulfur reagents. The reactions of alkynes with various sulfur-containing compounds including RSSR (disulfides), RSH (thiols), S8 (elemental sulphur), alkynyl thioethers, RSCN, AgSCF3, K2S, Na2S, dithiane, RSCl, NFSI, RNCS, EtOCS2K, thiocarbamate, RSONH2, thiourea, sulfoxide, RSO2N3, CS2, RSO2NH2, RSO2NHNH2, RSO2Cl, RSO2Oar, RSO2SR', DABCO·(SO2)2, Na2S2O5, K2S2O5, RSO2H, RSO2Na and related compounds are discussed. Diverse mechanisms such as radical, electrophilic/nucleophilic addition, rearrangement, C-C bond cleavage, and CuAAC are discussed. The content is organized by substrates and reactivity patterns. We hope it will help in future research in this area.
Collapse
Affiliation(s)
- Yuemei Xu
- Department of Chemistry, Lishui University, No. 1, Xueyuan Road, Lishui City 323000, Zhejiang Province, P. R. China.
| | - Shujuan Zhang
- Department of Chemistry, Lishui University, No. 1, Xueyuan Road, Lishui City 323000, Zhejiang Province, P. R. China.
| | - Dayun Huang
- Department of Chemistry, Lishui University, No. 1, Xueyuan Road, Lishui City 323000, Zhejiang Province, P. R. China.
| | - Xiangmei Wu
- Department of Chemistry, Lishui University, No. 1, Xueyuan Road, Lishui City 323000, Zhejiang Province, P. R. China.
| |
Collapse
|
2
|
Mandal R, Ghosh S, Khandelia T, Panigrahi P, Patel BK. Base-Induced Decarboxylative 1,1-Alkoxy Thiolation via Hydrothiolation of Vinylene Carbonate. J Org Chem 2023; 88:16655-16660. [PMID: 37964434 DOI: 10.1021/acs.joc.3c02036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
A base-mediated 1,1-difunctionalization of vinylene carbonate has been achieved using two different nucleophiles, namely, thiol and alcohol, with the assistance of air (O2). In alcoholic solvents, decarboxylation occurs at room temperature to provide a 1,1-difunctionalized product, where vinylene carbonate serves as an ethynol (C2) synthon in this three-component reaction. On the other hand, in acetonitrile, exclusive hydrothiolation occurs under the basic conditions at room temperature. This method offers a one-pot decarboxylative regioselective difunctionalization of vinylene carbonate at room temperature for the construction of α-alkoxy-β-hydroxy sulfide.
Collapse
Affiliation(s)
- Raju Mandal
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Subhendu Ghosh
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Tamanna Khandelia
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Pritishree Panigrahi
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| |
Collapse
|
3
|
Wang D, Du J, Lin WL, Li YS, Dong ZB. Thiolation of Terminal Alkynes with Thiuram Disulfide Reagents Using Water as the Hydrogen Source: Stereoselective Synthesis of ( Z)-Vinyl Sulfides. J Org Chem 2023. [PMID: 38019102 DOI: 10.1021/acs.joc.3c01730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
A stereoselective and environmentally friendly thiolation of terminal alkynes was reported. Thiuram disulfide reagents (tetramethylthiuram disulfide and tetraethylthiuram disulfide) that reacted with alkynes in dimethyl sulfoxide (DMSO)/H2O could give (Z)-vinyl sulfides in good yields (up to 88%). This protocol features broad substrate scope, good stereoselectivity, high atom economy, good yields, and is transition metal-free. Mechanistic studies revealed that water and DMSO served as hydrogen sources, which greatly highlighted the unique reactivity of this special reaction involving two H-atom donors.
Collapse
Affiliation(s)
- Dan Wang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jing Du
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Wan-Li Lin
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yue-Sheng Li
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Zhi-Bing Dong
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
4
|
Maharana R, Bhanja R, Mal P, Samanta K. Investigation of the Effect of Solvents on the Synthesis of Aza-flavanone from Aminochalcone Facilitated by Halogen Bonding. ACS OMEGA 2023; 8:33785-33793. [PMID: 37744869 PMCID: PMC10515354 DOI: 10.1021/acsomega.3c04207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023]
Abstract
It has been recognized that CBr4 can give rise to a noncovalent interaction known as halogen bond (XB). CBr4 was found to catalyze, in terms of XB formation, the transformation of 2'-aminochalcone to aza-flavanone through an intramolecular Michael addition reaction. The impact of XB and the resulting yield of aza-flavanone exhibited a pronounced dependence on the characteristics of the solvent. Notably, yields of 88% in ethanol and 33% in DMSO were achieved, while merely a trace amount of the product was detected in benzene. In this work, we use a computational modeling study to understand this variance in yield. The reaction is modeled at the level of density functional theory (based on the M06-2X exchange-correlation functional) with all-electron basis sets of triple-ζ quality. Grimme's dispersion correction is incorporated to account for the noncovalent interactions accurately. Harmonic frequency calculations are carried out to establish the character of the optimized structures (minimum or saddle point). Our calculations confirm the formation of an XB between CBr4 and the reacting species and its role in lowering the activation energy barrier. Stronger orbital interactions and significant lowering of the steric repulsion were found to be important in lowering the activation barrier. The negligible yield in the nonpolar solvent benzene may be attributed to the high activation energy as well as the inadequate stabilization of the zwitterionic intermediate. In ethanol, a protic solvent, additional H-bonding contributes to further lowering of the activation barrier and better stabilization of the zwitterionic intermediate. The combined effects of solvent polarity, XB, and H-bond are likely to give rise to an excellent yield of aza-flavanone in ethanol.
Collapse
Affiliation(s)
- Rajat
Rajiv Maharana
- School
of Basic Sciences, Indian Institute of Technology
Bhubaneswar, Argul, Odisha 752050, India
| | - Rosalin Bhanja
- School
of Chemical Sciences, National Institute
of Science Education and Research (NISER), An OCC of Homi Bhabha National
Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Prasenjit Mal
- School
of Chemical Sciences, National Institute
of Science Education and Research (NISER), An OCC of Homi Bhabha National
Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Kousik Samanta
- School
of Basic Sciences, Indian Institute of Technology
Bhubaneswar, Argul, Odisha 752050, India
| |
Collapse
|
5
|
Khandelia T, Ghosh S, Panigrahi P, Mandal R, Boruah D, Patel BK. Photo-induced 1,2-thiohydroxylation of maleimide involving disulfide and singlet oxygen. Chem Commun (Camb) 2023; 59:11196-11199. [PMID: 37650219 DOI: 10.1039/d3cc03296e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
A visible light-driven di-functionalization of maleimide with disulfide and in situ-generated singlet oxygen offers selective 1,2-thiohydroxylation under additive-free conditions. Here the disulfide plays the dual role of photosensitizer and the coupling reagent. Notably, the hydroxyl functionality originates from the in situ generated singlet oxygen followed by HAT from H2O (moisture).
Collapse
Affiliation(s)
- Tamanna Khandelia
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Subhendu Ghosh
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Pritishree Panigrahi
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Raju Mandal
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Deepjyoti Boruah
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| |
Collapse
|
6
|
Dinda TK, Kabir SR, Mal P. Stereoselective Synthesis of Z-Styryl Sulfides from Nucleophilic Addition of Arylacetylenes and Benzyl Thiols. J Org Chem 2023; 88:10070-10085. [PMID: 37406245 DOI: 10.1021/acs.joc.3c00911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
The stereoselective synthesis of Z-anti-Markovnikov styryl sulfides via an anionic thiolate-alkyne addition reaction was achieved when the terminal alkynes and benzyl mercaptans were reacted using tBuOLi (0.5 equiv) in EtOH under ambient conditions. Exclusive stereoselectivity (ca. 100%) was achieved by stereoelectronic control via anti-periplanar and anti-Markovnikov addition of benzylthiolates to phenylacetylenes. Solvolysis of lithium thiolate ion pairs in ethanol significantly suppresses the competing formation of the E-isomer. A remarkable enhancement of the Z-selectivity under a longer reaction time was observed.
Collapse
Affiliation(s)
- Tarun Kumar Dinda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Syed Ramizul Kabir
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| |
Collapse
|
7
|
Bruña S, Valverde-González A, Montero-Campillo MM, Mó O, Cuadrado I. Thiol-yne chemistry of diferrocenylacetylene: from synthesis and electrochemistry to theoretical studies. Dalton Trans 2022; 51:15412-15424. [PMID: 36156664 DOI: 10.1039/d2dt02378d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The thiol-yne coupling chemistry of diferrocenylacetylene (FcCCFc) 1, bearing two electron rich and redox-active ferrocenyl units (Fc = Fe(η5-C5H4)(η5-C5H5)) and an internal triple bond, has been investigated for the first time. In order to determine whether steric limitations might affect hydrothiolation, a model reaction using a functionalized monothiol was tested, namely 2-mercaptoethanol I. The thiol-diferrocenylacetylene reactions were initiated either thermally (in toluene with AIBN) or by UV light irradiation (in THF and in the presence of DMPA as the photoinitiator). The outcomes of these thiol-yne reactions showed a strong dependence on the initiation method used, with the thermally initiated one being the most efficient. These thiol-diferrocenylacetylene reactions mainly afforded the (Z)-stereoisomer of the newly obtained vinyl thioether sulfide FcCHC(Fc)S-(CH2)2OH (2), unlike the more common (E)-vinyl sulfides found in other additions to alkynes. The hydrothiolation of the internal -CC- bond in 1 was successfully extended to dithiol 2,2'-(ethylenedioxy)diethanethiol II, leading to the formation of the (ZZ)-isomer, with four ferrocenyl units, as the major product. According to the electrochemical studies, the new asymmetrical ferrocenyl-vinyl sulfides show iron-iron electronic and electrostatic interactions. Theoretical results for the (Z)-stereoisomer (2) suggest that adiabatic oxidation would lead to the loss of almost one electron on the ferrocenyl subunit closer to the thioether chain. Furthermore, the thiol-yne chemistry of the internal -CC- bond in diferrocenylacetylene has been compared to the external triple bond in ethynylferrocene, the theoretical results of which helped us to rationalize the very different reactivities observed in both metallocenes.
Collapse
Affiliation(s)
- Sonia Bruña
- Departamento de Química Inorgánica, Facultad de Ciencias, Calle Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain. .,Institute for Advanced Research in Chemical Sciences (IAdChem), Facultad de Ciencias, Calle Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Antonio Valverde-González
- Departamento de Química Inorgánica, Facultad de Ciencias, Calle Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain.
| | - M Merced Montero-Campillo
- Departamento de Química, Facultad de Ciencias, Calle Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Otilia Mó
- Institute for Advanced Research in Chemical Sciences (IAdChem), Facultad de Ciencias, Calle Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain.,Departamento de Química, Facultad de Ciencias, Calle Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Isabel Cuadrado
- Departamento de Química Inorgánica, Facultad de Ciencias, Calle Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain. .,Institute for Advanced Research in Chemical Sciences (IAdChem), Facultad de Ciencias, Calle Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
8
|
Sim HS, Khanal HD, Lee YR. Fe(III)-Catalyzed Tandem Cyclization of Phenylpropiolamides with 3-Formylchromones for the Construction of 2-Pyridones. J Org Chem 2022; 87:12890-12899. [PMID: 36094877 DOI: 10.1021/acs.joc.2c01459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A highly efficient and atom-economic iron(III)-catalyzed three-component heteroannulation reaction between phenylpropiolamides, 3-formylchromones, and water is described for the construction of diversely multifunctionalized 2-pyridones. This protocol allows rapid access to a variety of 2-pyridones bearing an ortho-hydroxybenzoyl and a benzoyl scaffold under operationally simple conditions. The synthetic utility of the synthesized 2-pyridone scaffolds is demonstrated by transformation into biologically interesting complex heterocycles.
Collapse
Affiliation(s)
- Hyo Seon Sim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Hari Datta Khanal
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
9
|
Mathuri A, Pramanik M, Mal P. 3-Arylsulfonylquinolines from N-Propargylamines via Cascaded Oxidative Sulfonylation Using DABSO. J Org Chem 2022; 87:6812-6823. [PMID: 35509227 DOI: 10.1021/acs.joc.2c00499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We report a cascaded oxidative sulfonylation of N-propargylamine via a three-component coupling reaction using DABCO·(SO2)2 (DABSO). 3-Arylsulfonylquinolines were obtained by mixing diazonium tetrafluoroborate, N-propargylamine, and DABSO under argon atmosphere in dichloroethane (DCE) for 1 h. In a radical pathway, DABSO was utilized as the sulfone source and an oxidant in this radical-mediated cascaded reaction.
Collapse
Affiliation(s)
- Ashis Mathuri
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Jatni, District Khurda, Odisha 752050, India
| | - Milan Pramanik
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Jatni, District Khurda, Odisha 752050, India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Jatni, District Khurda, Odisha 752050, India
| |
Collapse
|
10
|
Pramanik M, Mathuri A, Mal P. t BuOLi-promoted terminal alkyne functionalizations by aliphatic thiols and alcohols. Org Biomol Chem 2022; 20:2671-2680. [PMID: 35293412 DOI: 10.1039/d2ob00079b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selective radical addition to terminal alkynes is always a difficult task to achieve because it gives a mixture of stereo- and regioisomers. Herein we describe the selective addition of aliphatic thiols or alcohols to N-phenylpropiolamides (terminal alkynes) using lithium tert-butoxide (tBuOLi) in ethanol as a promoter. Mechanistically, it has been shown that the reaction proceeded through the generation of a thiyl radical intermediate, and the amide group in N-phenylpropiolamide could help in the activation of the alkyne, which led to thioacetalization via the formation of a (Z)-selective anti-Markovnikov vinyl sulfide. The (Z)-selectivity during the formation of vinyl sulfides was controlled by an intramolecular sulfur⋯oxygen interaction.
Collapse
Affiliation(s)
- Milan Pramanik
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India.
| | - Ashis Mathuri
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India.
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India.
| |
Collapse
|
11
|
Bal A, Dinda TK, Mal P. A Mechanochemical Aliphatic Iodination (and Bromination) by Cascaded Cyclization. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ankita Bal
- NISER: National Institute of Science Education and Research School of Chemical Sciences INDIA
| | - Tarun Kumar Dinda
- NISER: National Institute of Science Education and Research School of Chemical Sciences INDIA
| | - Prasenjit Mal
- NISER Bhubaneswar School of Chemical Sciences PO Bhimpur-PadanpurVia JatniDistrict Khurda 752050 Bhubaneswar INDIA
| |
Collapse
|
12
|
Cho S, Lee Y, Lee K, Lee H, Lee Y, Jung B. Synthesis of alkynamides through reaction of alkyl- or aryl-substituted alkynylaluminums with isocyanates. Org Biomol Chem 2021; 20:139-151. [PMID: 34874041 DOI: 10.1039/d1ob01990b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An efficient and facile method for the preparation of alkynamides through Et3N-catalyzed alumination of alkyl- or aryl-substituted terminal alkynes with AlMe3 and sequential nucleophilic addition of in situ generated alkynylaluminums to isocyanates is described. This method has the merits of using readily available isocyanates and monosubstituted alkynes, easy access to organoaluminums, short reaction times, and high efficiency. A gram-scale synthesis of the desired alkynamide and its application to the formation of α-methylene-β-lactams demonstrates the synthetic utility of this method.
Collapse
Affiliation(s)
- Soohong Cho
- Department of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea.
| | - Yeonjoo Lee
- Department of Emerging Materials Science, DGIST, Daegu 42988, Republic of Korea.
| | - Kyeongmin Lee
- Department of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea.
| | - Hwiwoong Lee
- Department of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea.
| | - Yunmi Lee
- Department of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea.
| | - Byunghyuck Jung
- Department of Emerging Materials Science, DGIST, Daegu 42988, Republic of Korea.
| |
Collapse
|
13
|
Bal A, Mal P. A Click Reaction Enabled by Phosphorus‐Oxygen Bond for Synthesis of Triazoles. ChemistrySelect 2021. [DOI: 10.1002/slct.202102758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ankita Bal
- School of Chemical Sciences Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur Via Jatni, District Khurda Odisha 752050 India
| | - Prasenjit Mal
- School of Chemical Sciences Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur Via Jatni, District Khurda Odisha 752050 India
| |
Collapse
|
14
|
Fındık V, Varinca BT, Degirmenci I, Sag Erdem S. Insight into the Thiol-yne Kinetics via a Computational Approach. J Phys Chem A 2021; 125:3556-3568. [PMID: 33887139 DOI: 10.1021/acs.jpca.0c11599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Thiol-yne reactions have drawn attention because of the click nature as well as the regular step-growth network nature of their products, despite the radical-mediated reactant. However, the factors governing the reaction pathways have not been examined using quantum chemical tools in a comprehensive manner. Thereupon, we have systematically investigated the mechanism of thiol-yne reactions, focusing on the structural influences of thiol and alkyne functionalities. The reaction kinetics, structure-reactivity relations, and E/Z diastereoselectivity of the products have been enlightened for the first cycle of the thiol-yne polymerization reaction. For this reason, a diverse set of 11 thiol-yne reactions with four thiols and eight alkynes was modeled by means of density functional theory. We performed a benchmark study and determined the M06-2X/6-31+G(d,p) level of theory as the best cost-effective methodology to model such reactions. Results reveal that spin density, the stabilities of sulfur radicals for propagation, and the stability of alkenyl intermediate radicals for the chain transfer are the determining factors of each reaction rate. Intramolecular π-π stacking interactions at transition-state structures are found to be responsible for Z diastereoselectivity.
Collapse
Affiliation(s)
- Volkan Fındık
- LPCT UMR 7019, Université de Lorraine, CNRS, F54000 Nancy, France.,Department of Chemistry, Faculty of Arts and Sciences, Marmara University, 34722 Istanbul, Turkey
| | - Betul Tuba Varinca
- Department of Chemistry, Faculty of Arts and Sciences, Marmara University, 34722 Istanbul, Turkey
| | - Isa Degirmenci
- Chemical Engineering Department, Ondokuz Mayıs University, 55139 Samsun, Turkey
| | - Safiye Sag Erdem
- Department of Chemistry, Faculty of Arts and Sciences, Marmara University, 34722 Istanbul, Turkey
| |
Collapse
|
15
|
Wang Y, Liu J, Qiu G, Yang Y, Zhou H. Metal-Free Selenizative spiro-Tricyclization of N-Hydroxylethyl- N-arylpropiolamides. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202106044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
16
|
Choudhuri K, Pramanik M, Mal P. Noncovalent Interactions in C–S Bond Formation Reactions. J Org Chem 2020; 85:11997-12011. [DOI: 10.1021/acs.joc.0c01534] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Khokan Choudhuri
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, P.O. Bhimpur-Padanpur,
Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Milan Pramanik
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, P.O. Bhimpur-Padanpur,
Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, P.O. Bhimpur-Padanpur,
Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| |
Collapse
|
17
|
Lynch DM, Scanlan EM. Thiyl Radicals: Versatile Reactive Intermediates for Cyclization of Unsaturated Substrates. Molecules 2020; 25:E3094. [PMID: 32646036 PMCID: PMC7412111 DOI: 10.3390/molecules25133094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 01/11/2023] Open
Abstract
Sulfur centered radicals are widely employed in chemical synthesis, in particular for alkene and alkyne hydrothiolation towards thioether bioconjugates. The steadfast radical chain process that enables efficient hydrothiolation has been explored in the context of cascade reactions to furnish complex molecular architectures. The use of thiyl radicals offers a much cheaper and less toxic alternative to the archetypal organotin-based radical methods. This review outlines the development of thiyl radicals as reactive intermediates for initiating carbocyclization cascades. Key developments in cascade cyclization methodology are presented and applications for natural product synthesis are discussed. The review provides a chronological account of the field, beginning in the early seventies up to very recent examples; a span of almost 50 years.
Collapse
Affiliation(s)
| | - Eoin M. Scanlan
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland;
| |
Collapse
|
18
|
Zhu X, Zhou F, Yang Y, Deng G, Liang Y. Catalyst- and Additive-Free Method for the Synthesis of 2-Substituted Benzothiazoles from Aromatic Amines, Aliphatic Amines, and Elemental Sulfur. ACS OMEGA 2020; 5:13136-13147. [PMID: 32548500 PMCID: PMC7288589 DOI: 10.1021/acsomega.0c01150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Under catalyst- and additive-free conditions, a novel, convenient, environmentally friendly method was developed for the synthesis of 2-substituted benzothiazoles via the three-component one pot reaction from aromatic amines, aliphatic amines, and elemental sulfur. The reaction achieves double C-S and one C-N bond formations via cleavage of two C-N bonds and multiple C-H bonds. Furthermore, the mechanism research shows that DMSO acts as an oxidant in the cyclization reaction.
Collapse
Affiliation(s)
- Xiaoming Zhu
- National
and Local Joint Engineering Laboratory for New Petro-chemical Materials
and Fine Utilization of Resources, Key Laboratory of Chemical Biology
and Traditional Chinese Medicine Research, Ministry of Education,
Key Laboratory of the Assembly and Application of Organic Functional
Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
- Key
Laboratory of Functional Metal-Organic Compounds of Hunan Province,
Hunan Province Universities Key Laboratory of Functional Organometallic
Materials, College of Chemistry and Material Science, Hengyang Normal University, Hengyang, Hunan 421008, China
| | - Fengru Zhou
- National
and Local Joint Engineering Laboratory for New Petro-chemical Materials
and Fine Utilization of Resources, Key Laboratory of Chemical Biology
and Traditional Chinese Medicine Research, Ministry of Education,
Key Laboratory of the Assembly and Application of Organic Functional
Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
| | - Yuan Yang
- National
and Local Joint Engineering Laboratory for New Petro-chemical Materials
and Fine Utilization of Resources, Key Laboratory of Chemical Biology
and Traditional Chinese Medicine Research, Ministry of Education,
Key Laboratory of the Assembly and Application of Organic Functional
Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
| | - Guobo Deng
- National
and Local Joint Engineering Laboratory for New Petro-chemical Materials
and Fine Utilization of Resources, Key Laboratory of Chemical Biology
and Traditional Chinese Medicine Research, Ministry of Education,
Key Laboratory of the Assembly and Application of Organic Functional
Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
| | - Yun Liang
- National
and Local Joint Engineering Laboratory for New Petro-chemical Materials
and Fine Utilization of Resources, Key Laboratory of Chemical Biology
and Traditional Chinese Medicine Research, Ministry of Education,
Key Laboratory of the Assembly and Application of Organic Functional
Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
| |
Collapse
|