1
|
Saha P, Shaheen Shah S, Ali M, Nasiruzzaman Shaikh M, Aziz MA, Saleh Ahammad AJ. Cobalt Oxide-Based Electrocatalysts with Bifunctionality for High-Performing Rechargeable Zinc-Air Batteries. CHEM REC 2024; 24:e202300216. [PMID: 37651034 DOI: 10.1002/tcr.202300216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/16/2023] [Indexed: 09/01/2023]
Abstract
In recent years, the rapid growth in renewable energy applications has created a significant demand for efficient energy storage solutions on a large scale. Among the various options, rechargeable zinc-air batteries (ZABs) have emerged as an appealing choice in green energy storage technology due to their higher energy density, sustainability, and cost-effectiveness. Regarding this fact, a spotlight is shaded on air electrode for constructing high-performance ZABs. Cobalt oxide-based electrocatalysts on the air electrode have gained significant attention due to their extraordinary features. Particularly, exploration and integration of bifunctional behavior for energy storage has remarkably promoted both ORR and OER to facilitate the overall performance of the battery. The plot of this review is forwarded towards in-depth analysis of the latest advancements in electrocatalysts that are based on cobalt oxide and possess bifunctional properties along with an introduction of the fundamental aspects of ZABs, Additionally, the topic entails an examination of the morphological variations and mechanistic details mentioning about the synthesis processes. Finally, a direction is provided for future research endeavors through addressing the challenges and prospects in the advancement of next-generation bifunctional electrocatalysts to empower high-performing ZABs with bifunctional cobalt oxide.
Collapse
Affiliation(s)
- Protity Saha
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
- present address: Department of Environmental Science, Bangladesh University of Professionals (BUP), Dhaka, 1216, Bnagladesh
| | - Syed Shaheen Shah
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8520, Japan
| | - Muhammad Ali
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - M Nasiruzzaman Shaikh
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - A J Saleh Ahammad
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| |
Collapse
|
2
|
Hu F, Wang D, Ma X, Hu T, Yue Y, Tang W, Wu P, Tong T, Peng W. Concurrent Dual-Contrast Enhancement Using Fe 3O 4 Nanoparticles to Achieve a CEST Signal Controllability. ACS OMEGA 2023; 8:24153-24164. [PMID: 37457473 PMCID: PMC10339402 DOI: 10.1021/acsomega.2c07000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/13/2023] [Indexed: 07/18/2023]
Abstract
Traditional T2 magnetic resonance imaging (MRI) contrast agents have defects inherent to negative contrast agents, while chemical exchange saturation transfer (CEST) contrast agents can quantify substances at trace concentrations. After reaching a certain concentration, iron-based contrast agents can "shut down" CEST signals. The application range of T2 contrast agents can be widened through a combination of CEST and T2 contrast agents, which has promising application prospects. The purpose of this study is to develop a T2 MRI negative contrast agent with a controllable size and to explore the feasibility of dual contrast enhancement by combining T2 with CEST contrast agents. The study was carried out in vitro with HCT-116 human colon cancer cells. A GE SIGNA Pioneer 3.0 T medical MRI scanner was used to acquire CEST images with different saturation radio-frequency powers (1.25/2.5/3.75/5 μT) by 2D spin echo-echo planar imaging (SE-EPI). Magnetic resonance image compilation (MAGiC) was acquired by a multidynamic multiecho 2D fast spin-echo sequence. The feasibility of this dual-contrast enhancement method was assessed by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, dynamic light scattering, ζ potential analysis, inductively coupled plasma, X-ray photoelectron spectroscopy, X-ray powder diffraction, vibrating-sample magnetometry, MRI, and a Cell Counting Kit-8 assay. The association between the transverse relaxation rate r2 and the pH of the iron-based contrast agents was analyzed by linear fitting, and the linear relationship between the CEST effect in different B1 fields and pH was analyzed by the ratio method. Fe3O4 nanoparticles (NPs) with a mean particle size of 82.6 ± 22.4 nm were prepared by a classical process, and their surface was successfully modified with -OH active functional groups. They exhibited self-aggregation in an acidic environment. The CEST effect was enhanced as the B1 field increased, and an in vitro pH map was successfully plotted using the ratio method. Fe3O4 NPs could stably serve as reference agents at different pH values. At a concentration of 30 μg/mL, Fe3O4 NPs "shut down" the CEST signals, but when the concentration of Fe3O4 NPs was less than 10 μg/mL, the two contrast agents coexisted. The prepared Fe3O4 NPs had almost no toxicity, and when their concentration rose to 200 μg/mL at pH 6.5 or 7.4, they did not reach the half-maximum inhibitory concentration (IC50). Fe3O4 magnetic NPs with a controllable size and no toxicity were successfully synthesized. By combining Fe3O4 NPs with a CEST contrast agent, the two contrast agents could be imaged simultaneously; at higher concentrations, the iron-based contrast agent "shut down" the CEST signal. An in vitro pH map was successfully plotted by the ratio method. CEST signal inhibition can be used to realize the pH mapping of solid tumors and the identification of tumor active components, thus providing a new imaging method for tumor efficacy evaluation.
Collapse
Affiliation(s)
- Feixiang Hu
- Department
of Radiology, Fudan University Shanghai Cancer Center, Department
of Oncology, Shanghai Medical College, Fudan
University, Shanghai, People’s Republic of China 200032
| | - Dan Wang
- Department
of Ultrasound, Shanghai Municipal Hospital of Traditional Chinese
Medicine, Shanghai University of Traditional
Chinese Medicine, Shanghai, People’s Republic of China. 200071
| | - Xiaowen Ma
- Department
of Radiology, Fudan University Shanghai Cancer Center, Department
of Oncology, Shanghai Medical College, Fudan
University, Shanghai, People’s Republic of China 200032
| | - Tingdan Hu
- Department
of Radiology, Fudan University Shanghai Cancer Center, Department
of Oncology, Shanghai Medical College, Fudan
University, Shanghai, People’s Republic of China 200032
| | - Yali Yue
- Department
of Radiology, Children’s Hospital
of Fudan University, Shanghai, People’s Republic of China 200000
| | - Wei Tang
- Department
of Radiology, Fudan University Shanghai Cancer Center, Department
of Oncology, Shanghai Medical College, Fudan
University, Shanghai, People’s Republic of China 200032
| | - PuYe Wu
- GE
Healthcare, Beijing, People’s Republic of China 100176
| | - Tong Tong
- Department
of Radiology, Fudan University Shanghai Cancer Center, Department
of Oncology, Shanghai Medical College, Fudan
University, Shanghai, People’s Republic of China 200032
| | - Weijun Peng
- Department
of Radiology, Fudan University Shanghai Cancer Center, Department
of Oncology, Shanghai Medical College, Fudan
University, Shanghai, People’s Republic of China 200032
| |
Collapse
|
3
|
Chang J, Yang Y. Recent advances in zinc-air batteries: self-standing inorganic nanoporous metal films as air cathodes. Chem Commun (Camb) 2023; 59:5823-5838. [PMID: 37096450 DOI: 10.1039/d3cc00742a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Zinc-air batteries (ZABs) have promising prospects as next-generation electrochemical energy systems due to their high safety, high power density, environmental friendliness, and low cost. However, the air cathodes used in ZABs still face many challenges, such as the low catalytic activity and poor stability of carbon-based materials at high current density/voltage. To achieve high activity and stability of rechargeable ZABs, chemically and electrochemically stable air cathodes with bifunctional oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) activity, fast reaction rate with low platinum group metal (PGM) loading or PGM-free materials are required, which are difficult to achieve with common electrocatalysts. Meanwhile, inorganic nanoporous metal films (INMFs) have many advantages as self-standing air cathodes, such as high activity and stability for both the ORR/OER under highly alkaline conditions. The high surface area, three-dimensional channels, and porous structure with controllable crystal growth facet/direction make INMFs an ideal candidate as air cathodes for ZABs. In this review, we first revisit some critical descriptors to assess the performance of ZABs, and recommend the standard test and reported manner. We then summarize the recent progress of low-Pt, low-Pd, and PGM-free-based materials as air cathodes with low/non-PGM loading for rechargeable ZABs. The structure-composition-performance relationship between INMFs and ZABs is discussed in-depth. Finally, we provide our perspectives on the further development of INMFs towards rechargeable ZABs, as well as current issues that need to be addressed. This work will not only attract researchers' attention and guide them to assess and report the performance of ZABs more accurately, but also stimulate more innovative strategies to drive the practical application of INMFS for ZABs and other energy-related technologies.
Collapse
Affiliation(s)
- Jinfa Chang
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA.
| | - Yang Yang
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA.
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA
- Renewable Energy and Chemical Transformation Cluster, University of Central Florida, Orlando, FL 32826, USA
- Department of Chemistry, University of Central Florida, Orlando, FL 32826, USA
- The Stephen W. Hawking Center for Microgravity Research and Education, University of Central Florida, Orlando, FL 32826, USA
| |
Collapse
|
4
|
Li Y, Huang S, Peng S, Jia H, Pang J, Ibarlucea B, Hou C, Cao Y, Zhou W, Liu H, Cuniberti G. Toward Smart Sensing by MXene. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206126. [PMID: 36517115 DOI: 10.1002/smll.202206126] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/17/2022] [Indexed: 06/17/2023]
Abstract
The Internet of Things era has promoted enormous research on sensors, communications, data fusion, and actuators. Among them, sensors are a prerequisite for acquiring the environmental information for delivering to an artificial data center to make decisions. The MXene-based sensors have aroused tremendous interest because of their extraordinary performances. In this review, the electrical, electronic, and optical properties of MXenes are first introduced. Next, the MXene-based sensors are discussed according to the sensing mechanisms such as electronic, electrochemical, and optical methods. Initially, biosensors are introduced based on chemiresistors and field-effect transistors. Besides, the wearable pressure sensor is demonstrated with piezoresistive devices. Third, the electrochemical methods include amperometry and electrochemiluminescence as examples. In addition, the optical approaches refer to surface plasmonic resonance and fluorescence resonance energy transfer. Moreover, the prospects are delivered of multimodal data fusion toward complicated human-like senses. Eventually, future opportunities for MXene research are conveyed in the new material discovery, structure design, and proof-of-concept devices.
Collapse
Affiliation(s)
- Yufen Li
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
| | - Shirong Huang
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01069, Dresden, Germany
- Center for Advancing Electronics Dresden, Technische Universität Dresden, 01069, Dresden, Germany
| | - Songang Peng
- High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
- Key Laboratory of Microelectronic Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Hao Jia
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Jinbo Pang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
| | - Bergoi Ibarlucea
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01069, Dresden, Germany
- Center for Advancing Electronics Dresden, Technische Universität Dresden, 01069, Dresden, Germany
| | - Chongyang Hou
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
| | - Yu Cao
- Key Laboratory of Modern Power System Simulation and Control and Renewable Energy Technology (Ministry of Education), Northeast Electric Power University, Jilin, 132012, China
- School of Electrical Engineering, Northeast Electric Power University, Jilin, 132012, China
| | - Weijia Zhou
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
| | - Hong Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
- State Key Laboratory of Crystal Materials, Center of Bio and Micro/Nano Functional Materials, Shandong University, 27 Shandanan Road, Jinan, 250100, China
| | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01069, Dresden, Germany
- Center for Advancing Electronics Dresden, Technische Universität Dresden, 01069, Dresden, Germany
- Dresden Center for Computational Materials Science, Technische Universität Dresden, 01062, Dresden, Germany
- Dresden Center for Intelligent Materials (GCL DCIM), Technische Universität Dresden, 01062, Dresden, Germany
| |
Collapse
|
5
|
Liu F, Wu X, Guo R, Miao H, Wang F, Yang C, Yuan J. Suppressing the Surface Amorphization of Ba 0.5Sr 0.5Co 0.8Fe 0.2O 3-δ Perovskite toward Oxygen Catalytic Reactions by Introducing the Compressive Stress. Inorg Chem 2023; 62:4373-4384. [PMID: 36862561 DOI: 10.1021/acs.inorgchem.3c00158] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) perovskite has been recognized as a promising oxygen evolution reaction (OER) catalyst due to its superior intrinsic catalytic activity. However, BSCF suffers from serious degradation during the OER process due to its surface amorphization caused by the segregation of A-site ions (Ba2+ and Sr2+). Herein, we construct a novel BSCF composite catalyst (BSCF-GDC-NR) by anchoring the gadolinium-doped ceria oxide (GDC) nanoparticles on the surface of a BSCF nanorod by a concentration-difference electrospinning method. Our BSCF-GDC-NR has greatly improved bifunctional oxygen catalytic activity and stability toward both oxygen reduction reaction (ORR) and OER compared with the pristine BSCF. The improvement of the stability can be related to that anchoring GDC on BSCF effectively suppresses the segregation and dissolution of A-site elements in BSCF during the preparation and catalytic processes. The suppression effects are ascribed to the introduction of compressive stress between BSCF and GDC, which greatly inhibits the diffusions of Ba and Sr ions. This work can give a guidance for developing the perovskite oxygen catalysts with high activity and stability.
Collapse
Affiliation(s)
- Fuyue Liu
- Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, PR China
| | - Xuyang Wu
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ran Guo
- Shanghai Frontiers Science Center of "Full Penetration" Far-reaching Offshore Ocean Energy and Power, Merchant Marine College, Shanghai Maritime University, Shanghai 200135, China
| | - He Miao
- Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, PR China
| | - Fu Wang
- Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, PR China
| | - Chao Yang
- Shanghai Frontiers Science Center of "Full Penetration" Far-reaching Offshore Ocean Energy and Power, Merchant Marine College, Shanghai Maritime University, Shanghai 200135, China
| | - Jinliang Yuan
- Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, PR China
| |
Collapse
|
6
|
Lu C, Gao Y, An W, Yan C, Yu F, Lu W, Wang C, Huang G. Gas-liquid diffusion directed rational synthesis of Fe-doped NiCo2O4 nanoflower for efficient oxygen evolution reaction. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Zhao H, Yao H, Wang S, Cao Y, Lu Z, Xie J, Hu J, Hao A. Doping-engineered bifunctional oxygen electrocatalyst with Se/Fe-doped Co3O4/N-doped carbon nanosheets as highly efficient rechargeable zinc-air batteries. J Colloid Interface Sci 2022; 626:475-485. [DOI: 10.1016/j.jcis.2022.06.147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/23/2022] [Accepted: 06/26/2022] [Indexed: 11/24/2022]
|
8
|
Tang K, Hu H, Xiong Y, Chen L, Zhang J, Yuan C, Wu M. Hydrophobization Engineering of the Air-Cathode Catalyst for Improved Oxygen Diffusion towards Efficient Zinc-Air Batteries. Angew Chem Int Ed Engl 2022; 61:e202202671. [PMID: 35357773 DOI: 10.1002/anie.202202671] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Indexed: 12/19/2022]
Abstract
Poor oxygen diffusion at multiphase interfaces in an air cathode suppresses the energy densities of zinc-air batteries (ZABs). Developing effective strategies to tackle the issue is of great significance for overcoming the performance bottleneck. Herein, inspired by the bionics of diving flies, a polytetrafluoroethylene layer was coated on the surfaces of Co3 O4 nanosheets (NSs) grown on carbon cloth (CC) to create a hydrophobic surface to enable the formation of more three-phase reaction interfaces and promoted oxygen diffusion, rendering the hydrophobic-Co3 O4 NSs/CC electrode a higher limiting current density (214 mA cm-2 at 0.3 V) than that (10 mA cm-2 ) of untreated-Co3 O4 NSs/CC electrode. Consequently, the assembled ZAB employing hydrophobic-Co3 O4 NSs/CC cathode acquired a higher power density (171 mW cm-2 ) than that (102 mW cm-2 ) utilizing untreated-Co3 O4 NSs/CC cathode, proving the enhanced interfacial reaction kinetics on air cathode benefiting from the hydrophobization engineering.
Collapse
Affiliation(s)
- Kun Tang
- School of Materials Science and Engineering, Key Laboratory of Photoelectric Conversion Energy Materials and Devices of Anhui University, Anhui University, Hefei, 230601, P. R. China
| | - Haibo Hu
- School of Materials Science and Engineering, Key Laboratory of Photoelectric Conversion Energy Materials and Devices of Anhui University, Anhui University, Hefei, 230601, P. R. China
| | - Ying Xiong
- School of Materials Science & Engineering, Southwest University of Science & Technology, Mianyang, 621010, P. R. China
| | - Lin Chen
- School of Materials Science & Engineering, Southwest University of Science & Technology, Mianyang, 621010, P. R. China
| | - Jinyang Zhang
- School of Materials Science & Engineering, University of Jinan, Jinan, Shandong, 250022, P. R. China
| | - Changzhou Yuan
- School of Materials Science & Engineering, University of Jinan, Jinan, Shandong, 250022, P. R. China
| | - Mingzai Wu
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Institute of Energy, Hefei Comprehensive National Science Center, Anhui University, Hefei, 230601, P. R. China
| |
Collapse
|
9
|
Zheng Q, Zhang Y, Su C, Zhao L, Guo Y. Nonnoble metal oxides for high‐performance Zn‐air batteries: Design strategies and future challenges. ASIA-PAC J CHEM ENG 2022. [DOI: 10.1002/apj.2776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qilong Zheng
- School of Materials Science and Technology Anhui University Hefei China
| | - Yidan Zhang
- School of Materials Science and Technology Anhui University Hefei China
- School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan China
| | - Chao Su
- School of Energy and Power Jiangsu University of Science and Technology Zhenjiang China
| | - Ling Zhao
- Faculty of Materials Science and Chemistry China University of Geosciences Wuhan China
| | - Youmin Guo
- School of Materials Science and Technology Anhui University Hefei China
| |
Collapse
|
10
|
Tang K, Hu H, Xiong Y, Chen L, Zhang J, Yuan C, Wu M. Hydrophobization Engineering of the Air‐cathode Catalyst for Improved Oxygen Diffusion towards Efficient Zinc‐Air Batteries. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kun Tang
- Anhui University School of Materials Science and Engineering CHINA
| | - Haibo Hu
- Anhui University School of Materials Science and Engineering CHINA
| | - Ying Xiong
- Southwest University of Science and Technology School of Materials Science & Engineering CHINA
| | - Lin Chen
- Southwest University of Science and Technology School of Materials Science & Engineering CHINA
| | - Jinyang Zhang
- University of Jinan School of Materials Science & Engineering CHINA
| | - Changzhou Yuan
- University of Jinan School of Material Science and Engineering Nanxinzhuang West Jinan CHINA
| | - Mingzai Wu
- Anhui University Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Institute of Energy, Hefei Comprehensive National Science Center CHINA
| |
Collapse
|
11
|
Xie J, Zhang H, Yang F, Cao X, Liu X, Lu X. Iron decorated ultrathin cobaltous hydroxide nanoflakes with impressive electrochemical reactivity for aqueous Zn batteries. Chem Commun (Camb) 2022; 58:3977-3980. [PMID: 35254364 DOI: 10.1039/d2cc00475e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The main bottlenecks of current Co-based cathodes are their relatively low capacity and inferior reversibility. Here, we report Fe decorated cobaltous hydroxide (FCO) nanoflakes with vastly improved capacity and cycling stability via an efficient surface activation approach, which function as an advanced cathode for Co-Zn batteries. In comparison with the pristine cobaltous hydroxide (CO), the FCO sample owns higher electrochemical reactivity and a larger electrochemical surface area, endowing it with impressive electrochemical properties.
Collapse
Affiliation(s)
- Jinhao Xie
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-Carbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - Haozhe Zhang
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-Carbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - Fan Yang
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-Carbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - Xiaoshuo Cao
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-Carbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - Xiaoqing Liu
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-Carbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - Xihong Lu
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-Carbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China. .,School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, P. R. China
| |
Collapse
|
12
|
Song Z, Li Z, Liu Y, Chen L, Zhang J, Zheng Z. In-site coupling of NiFe layered double hydroxides with N-doped carbon nanosheets on carbon cloth as integrated cathode for rechargeable Zn–air batteries. CrystEngComm 2022. [DOI: 10.1039/d2ce01081j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Exploring low-cost, high catalytic activity and high durability dual-function catalysts is critical for rechargeable Zn–air batteries to promote the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) processes.
Collapse
Affiliation(s)
- Zhaohai Song
- National Engineering Research Center for Intelligent Electrical Vehicle Power System, College of Mechanical and Electrical Engineering, Qingdao University, Qingdao, Shandong, 266071, China
| | - Zheng Li
- National Engineering Research Center for Intelligent Electrical Vehicle Power System, College of Mechanical and Electrical Engineering, Qingdao University, Qingdao, Shandong, 266071, China
| | - Yanqi Liu
- National Engineering Research Center for Intelligent Electrical Vehicle Power System, College of Mechanical and Electrical Engineering, Qingdao University, Qingdao, Shandong, 266071, China
| | - Linlin Chen
- National Engineering Research Center for Intelligent Electrical Vehicle Power System, College of Mechanical and Electrical Engineering, Qingdao University, Qingdao, Shandong, 266071, China
| | - Jianmin Zhang
- National Engineering Research Center for Intelligent Electrical Vehicle Power System, College of Mechanical and Electrical Engineering, Qingdao University, Qingdao, Shandong, 266071, China
| | - Zongmin Zheng
- National Engineering Research Center for Intelligent Electrical Vehicle Power System, College of Mechanical and Electrical Engineering, Qingdao University, Qingdao, Shandong, 266071, China
| |
Collapse
|
13
|
Wang Y, Wang ZP, Wu H, Hou L, Liu ZQ. Reconstruction of spinel Co 3O 4 by inert Zn 2+ towards enhanced oxygen catalytic activity. Chem Commun (Camb) 2021; 58:637-640. [PMID: 34904594 DOI: 10.1039/d1cc04330g] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
ZnxCo3-xO4 (0 ≤ x≤ 1) coupled with nitrogen-doped hollow porous carbon spheres exhibits a superior oxygen catalytic activity. A Zn-air battery using Zn0.6Co2.4O4/NHCS as a cathodic catalyst affords a high-power density (130 mW cm-2) and excellent stability. The effect of reconstruction of catalytically active Co ions induced by Zn is well-investigated.
Collapse
Affiliation(s)
- Yifan Wang
- School of Life Science, Guangzhou University, Guangzhou 510006, China. .,School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China.
| | - Ze-Pan Wang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China.
| | - Huixiang Wu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China.
| | - Liping Hou
- School of Life Science, Guangzhou University, Guangzhou 510006, China.
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
14
|
Yan X, Ha Y, Wu R. Binder-Free Air Electrodes for Rechargeable Zinc-Air Batteries: Recent Progress and Future Perspectives. SMALL METHODS 2021; 5:e2000827. [PMID: 34927848 DOI: 10.1002/smtd.202000827] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/17/2020] [Indexed: 06/14/2023]
Abstract
Designing an efficient air electrode is of great significance for the performance of rechargeable zinc (Zn)-air batteries. However, the most widely used approach to fabricate an air electrode involves polymeric binders, which may increase the interface resistance and block electrocatalytic active sites, thus deteriorating the performance of the battery. Therefore, binder-free air electrodes have attracted more and more research interests in recent years. This article provides a comprehensive overview of the latest advancements in designing and fabricating binder-free air electrodes for electrically rechargeable Zn-air batteries. Beginning with the fundamentals of Zn-air batteries and recently reported bifunctional active catalysts, self-supported air electrodes for liquid-state and flexible solid-state Zn-air batteries are then discussed in detail. Finally, the conclusion and the challenges faced for binder-free air electrodes in Zn-air batteries are also highlighted.
Collapse
Affiliation(s)
- Xiaoxiao Yan
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yuan Ha
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Renbing Wu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
15
|
Di Y, Ma C, Fu Y, Dong X, Liu X, Ma H. Engineering Cationic Sulfur-Doped Co 3O 4 Architectures with Exposing High-Reactive (112) Facets for Photoelectrocatalytic Water Purification. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8405-8416. [PMID: 33566566 DOI: 10.1021/acsami.0c20353] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Promoting the generation of intermediate active species (superoxide radical (•O2-)) is an important and challenging task for water purification by photoelectrocatalytic (PEC) oxidation. Herein, we have constructed hierarchical cationic sulfur-doped Co3O4 architectures with controllable morphology and highly exposed reactive facets by introducing l-cysteine as a capping reagent and sulfur resource via a one-step hydrothermal reaction. The as-obtained cationic sulfur (1.8 mmol l-cysteine) source doped Co3O4 (SC-1.8) architectures with highly exposed (112) facets exhibited superior PEC activities and long-term stability (∼25,000 s) in 1.0 mol·L-1 sulfuric acid for an accelerated reactive brilliant blue KN-R degradation test. Our experimental and theoretical results confirmed that the superior PEC performance of the SC-1.8 architectures could be ascribed the following factors: (1) the highly exposed reactive (112) facets of SC-1.8 promoted carrier transport and diffusion during the PEC process and facilitated separating the electron/hole pairs and producing the predominant active species (•O2-) compared with currently used other electrodes. (2) Cationic sulfur doped on the lattice of Co3O4 can narrow the band gap to extend the photoadsorption range and improve the lifetime of •O2- to enhance the PEC efficiency. This work not only proves that the SC-1.8 architectures with highly exposed (112) facets are a promising PEC catalyst due to increasing the electron transport and the lifetime of active species but also presents a new strategy for constructing an active PEC catalyst.
Collapse
Affiliation(s)
- Yanwei Di
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Ganjingzi District, Dalian 116034, P.R. China
| | - Chun Ma
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Ganjingzi District, Dalian 116034, P.R. China
| | - Yinghuan Fu
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Ganjingzi District, Dalian 116034, P.R. China
| | - Xiaoli Dong
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Ganjingzi District, Dalian 116034, P.R. China
| | - Xinghui Liu
- Department of Chemistry, Sungkyunkwan University (SKKU), 2066 Seoburo, Jangan-Gu, Suwon 16419, Republic of Korea
| | - Hongchao Ma
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Ganjingzi District, Dalian 116034, P.R. China
| |
Collapse
|
16
|
Selvakumar K, Duraisamy V, Senthil Kumar SM. Activity manifestation via architectural manipulation by cubic silica-derived Co 3O 4 electrocatalysts towards bifunctional oxygen electrode performance. NEW J CHEM 2021. [DOI: 10.1039/d1nj02061g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A KIT-6-derived Co3O4 material demonstrates superior bifunctional activity due to its higher densities of Co3+ and Co2+ sites.
Collapse
Affiliation(s)
- Karuppiah Selvakumar
- Electroorganic and Materials Electrochemistry (EME) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi-630 003, Tamil Nadu, India
| | - Velu Duraisamy
- Electroorganic and Materials Electrochemistry (EME) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi-630 003, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201 002, India
| | - Sakkarapalayam Murugesan Senthil Kumar
- Electroorganic and Materials Electrochemistry (EME) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi-630 003, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201 002, India
| |
Collapse
|
17
|
Ling Y, Li M, Qu K, Yang Z. Electronically interacted Co 3O 4/WS 2 as superior oxygen electrode for rechargeable zinc-air batteries. Chem Commun (Camb) 2020; 56:15193-15196. [PMID: 33225341 DOI: 10.1039/d0cc07319a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The electronically interacted Co3O4/WS2 with a maximum power density of 174 mW cm-2, 2.3 fold better than Pt/C-IrO2, shows its superiority as an oxygen electrode for rechargeable zinc-air batteries.
Collapse
Affiliation(s)
- Ying Ling
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan, 430074, China.
| | | | | | | |
Collapse
|
18
|
Wang X, Peng L, Xu N, Wu M, Wang Y, Guo J, Sun S, Qiao J. Cu/S-Occupation Bifunctional Oxygen Catalysts for Advanced Rechargeable Zinc-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52836-52844. [PMID: 33179509 DOI: 10.1021/acsami.0c16760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The design and synthesis of low-cost and highly efficient bifunctional catalysts is an inevitable path for rechargeable zinc-air batteries (rZABs). In this work, double-carbon co-supported Co-based oxide with the Cu and S substitutions are synthesized by a one-step hydrothermal method and formed a unique honeycomb structure. As expected, the (Cu, Co)3OS3@CNT-C3N4 exhibits high oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) activity with low overpotential (0.86 V), high power density (215 mW cm-2), and long-term discharge stability (115 h). The (Cu, Co)3OS3@CNT-C3N4-based rZAB also shows a stronger charge-discharge durability with a very low voltage gap of merely 0.5 V than that of Pt/C+RuO2. The high catalytic performances are attributed to these following reasons: (i) the porous morphology and hierarchical structure with plentiful "catalytic buffer", which accelerates the mass transfer; (ii) a high-speed electronic transmission network established by C3N4 and carbon nanotube (CNT), enhancing the conductivity; (iii) the strong synergistic effect between (Cu, Co)3OS3@CNT and C3N4, which improves the kinetics of ORR/OER; and (iv) the controllable occupation of Cu ions and S ions, which effectively regulates the CoO6 surface and increases the active site density. This work not only offers a promising ORR/OER electrode for rZAB but also provides a new pathway to understand the improvement mechanism for catalysts by the bi-ion substitutions.
Collapse
Affiliation(s)
- Xu Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, 2999 Ren'min North Road, Shanghai 201620, P. R. China
| | - Luwei Peng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, 2999 Ren'min North Road, Shanghai 201620, P. R. China
| | - Nengneng Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, 2999 Ren'min North Road, Shanghai 201620, P. R. China
- Department of Chemical Engineering, University of Louisiana at Lafayette, Lafayette, Louisiana 70504, United States
| | - Mingjie Wu
- Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, Varennes, Québec J3X 1S2, Canada
| | - Yongxia Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, 2999 Ren'min North Road, Shanghai 201620, P. R. China
| | - Jianing Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, 2999 Ren'min North Road, Shanghai 201620, P. R. China
| | - Shuhui Sun
- Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, Varennes, Québec J3X 1S2, Canada
| | - Jinli Qiao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, 2999 Ren'min North Road, Shanghai 201620, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Road, Shanghai 200092, P. R. China
| |
Collapse
|