1
|
Liu R, Li M, Liu Z, Hua B. Separation of cyclohexanol from cyclohexanol/cyclohexene mixtures by crystals of pillar[6]arene containing three benzoquinone units. Chem Commun (Camb) 2024; 60:7626-7629. [PMID: 38957992 DOI: 10.1039/d4cc02407a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Here, we develop a new absorbent for efficient separation of cyclohexanol (CHA-ol) and cyclohexene (CHA-ene) by using crystals of pillar[6]arene with three benzoquinone units (P3QA). P3QA crystals are found to show remarkable selectivity for CHA-ol in 50 : 50 (v/v) CHA-ol : CHA-ene mixtures with a purity of 95.2%, along with vapochromic behavior.
Collapse
Affiliation(s)
- Rui Liu
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Ming Li
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Zhongwen Liu
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Bin Hua
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| |
Collapse
|
2
|
Gu MJ, Guo WC, Han XN, Han Y, Chen CF. Macrocycle-Based Charge Transfer Cocrystals with Dynamically Reversible Chiral Self-Sorting Display Chain Length-Selective Vapochromism to Alkyl Ketones. Angew Chem Int Ed Engl 2024; 63:e202407095. [PMID: 38658318 DOI: 10.1002/anie.202407095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
Chirality-driven self-sorting plays an essential role in controlling the biofunction of biosystems, such as the chiral double-helix structure of DNA from self-recognition by hydrogen bonding. However, achieving precise control over the chiral self-sorted structures and their functional properties for the bioinspired supramolecular systems still remains a challenge, not to mention realizing dynamically reversible regulation. Herein, we report an unprecedented saucer[4]arene-based charge transfer (CT) cocrystal system with dynamically reversible chiral self-sorting synergistically induced by chiral triangular macrocycle and organic vapors. It displays efficient chain length-selective vapochromism toward alkyl ketones due to precise modulation of optical properties by vapor-induced diverse structural transformations. Experimental and theoretical studies reveal that the unique vapochromic behavior is mainly attributed to the formation of homo- or heterochiral self-sorted assemblies with different alkyl ketone guests, which differ dramatically in solid-state superstructures and CT interactions, thus influencing their optical properties. This work highlights the essential role of chiral self-sorting in controlling the functional properties of synthetic supramolecular systems, and the rarely seen controllable chiral self-sorting at the solid-vapor interface deepens the understanding of efficient vapochromic sensors.
Collapse
Affiliation(s)
- Meng-Jie Gu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei-Chen Guo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Ni Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ying Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Li Z, Tan Y, Ding M, Tang L, Zeng F. Keto-Adamantane-Based Macrocycle Crystalline Supramolecular Assemblies Showing Selective Vapochromism to Tetrahydrofuran. Molecules 2024; 29:719. [PMID: 38338463 PMCID: PMC10856198 DOI: 10.3390/molecules29030719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024] Open
Abstract
Here, we report the synthesis of adamantane-based macrocycle 2 by combining adamantane building blocks with π-donor 1,3-dimethoxy-benzene units. An unpredictable keto-adamantane-based macrocycle 3 was obtained by the oxidation of 2 using DDQ as an oxidant. Moreover, a new type of macrocyclic molecule-based CT cocrystal was prepared through exo-wall CT interactions between 3 and DDQ. The cocrystal material showed selective vapochromism behavior towards THF, specifically, among nine volatile organic solvents commonly used in the laboratory. Powder X-ray diffraction; UV-Vis diffuse reflectance spectroscopy; 1H NMR; and single crystal X-ray diffraction analyses revealed that color changes are attributed to the vapor-triggered decomplexation of cocrystals.
Collapse
Affiliation(s)
| | | | - Manhua Ding
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 415199, China; (Z.L.); (Y.T.); (L.T.)
| | | | - Fei Zeng
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 415199, China; (Z.L.); (Y.T.); (L.T.)
| |
Collapse
|
4
|
Lou XY, Zhang S, Wang Y, Yang YW. Smart organic materials based on macrocycle hosts. Chem Soc Rev 2023; 52:6644-6663. [PMID: 37661759 DOI: 10.1039/d3cs00506b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Innovative design of smart organic materials is of great importance for the advancement of modern technology. Macrocycle hosts, possessing cyclic skeletons, intrinsic cavities, and specific guest binding properties, have demonstrated pronounced potential for the elaborate fabrication of a variety of functional organic materials with smart stimuli-responsive characteristics. In this tutorial review, we outline the current development of smart organic materials based on macrocycle hosts as key building blocks, focusing on the design principles and functional mechanisms of the tailored systems. Three main types of macrocycle-based smart organic materials are exemplified as follows according to the distinct forms of construction patterns: (1) supramolecular polymeric materials and nanoassemblies; (2) adaptive molecular crystals; (3) smart porous organic materials. The responsive performances of macrocycle-containing smart materials in versatile aspects, including mechanically adaptive polymers, soft optoelectronic devices, data encryption, drug delivery systems, artificial transmembrane channels, crystalline-state gas adsorption/separation, and fluorescence sensing, are illustrated by discussing the representative studies as paradigms, where the roles of macrocycles in these systems are highlighted. We also provide in the conclusion part the perspectives and remaining challenges in this burgeoning field.
Collapse
Affiliation(s)
- Xin-Yue Lou
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Siyuan Zhang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Yan Wang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Ying-Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| |
Collapse
|
5
|
Wu JR, Wu G, Li D, Li MH, Wang Y, Yang YW. Grinding-induced supramolecular charge-transfer assemblies with switchable vapochromism toward haloalkane isomers. Nat Commun 2023; 14:5954. [PMID: 37741830 PMCID: PMC10517982 DOI: 10.1038/s41467-023-41713-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023] Open
Abstract
Synthetic macrocycles have proved to be of great application value in functional charge-transfer systems in the solid state in recent years. Here we show a switchable on-off type vapochromic system toward 1-/2-bromoalkane isomers by constructing solid-state charge-transfer complexes between electron-rich perethylated pillar[5]arene and electron-deficient aromatic acceptors including 4-nitrobenzonitrile and 1,4-dinitrobenzene. These charge-transfer complexes with different colors show opposite color changes upon exposure to the vapors of 1-bromoalkanes (fading) and 2-bromoalkanes (deepening). Single-crystal structures incorporating X-ray powder diffraction and spectral analyses demonstrate that this on-off type vapochromic behavior is mainly attributed to the destruction (off) and reconstruction (on) of the charge-transfer interactions between perethylated pillar[5]arene and the acceptors, for which the competitive host-guest binding of 1-bromoalkanes and the solid-state structural transformation triggered by 2-bromoalkanes are respectively responsible. This work provides a simple colorimetric method for distinguishing positional isomers with similar physical and chemical properties.
Collapse
Affiliation(s)
- Jia-Rui Wu
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, 130012, Changchun, P. R. China
- Key Laboratory of Automobile Materials of Ministry of Education, College of Materials Science and Engineering, Jilin University, 5988 Renmin Street, 130025, Changchun, P. R. China
| | - Gengxin Wu
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, 130012, Changchun, P. R. China
| | - Dongxia Li
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, 130012, Changchun, P. R. China
| | - Meng-Hao Li
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, 130012, Changchun, P. R. China
| | - Yan Wang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, 130012, Changchun, P. R. China
| | - Ying-Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, 130012, Changchun, P. R. China.
| |
Collapse
|
6
|
Wu JR, Wu G, Li D, Yang YW. Macrocycle-Based Crystalline Supramolecular Assemblies Built with Intermolecular Charge-Transfer Interactions. Angew Chem Int Ed Engl 2023; 62:e202218142. [PMID: 36651562 DOI: 10.1002/anie.202218142] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/19/2023]
Abstract
Synthetic macrocycles have served as principal tools for supramolecular chemistry, have greatly extended the scope of organic charge transfer (CT) complexes, and have proved to be of great practical value in the solid state during the past few years. In this Minireview, we summarize the research progress on the macrocycle-based crystalline supramolecular assemblies primarily driven by intermolecular CT interactions (a.k.a. macrocycle-based crystalline CT assemblies, MCCAs for short), which are classified by their donor-acceptor (D-A) constituent elements, including simplex macrocyclic hosts, heterogeneous macrocyclic hosts, and host-guest D-A pairs. Particular attention will be focused on their diverse functions and applications, as well as the underlying CT mechanisms from the perspective of crystal engineering. Finally, the remaining challenges and prospects are outlined.
Collapse
Affiliation(s)
- Jia-Rui Wu
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Gengxin Wu
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Dongxia Li
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Ying-Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
7
|
Patil SV, Gejji SP, Malkhede DD. Design and synthesis of piezochromic materials exploring intermolecular charge transfer: chalconoids bound to the p-sulfonatocalix[6]arene macrocycle. Phys Chem Chem Phys 2022; 24:17809-17823. [PMID: 35848925 DOI: 10.1039/d2cp01483a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Solid-state systems composed of chalconoid encapsulated within p-sulfonatocalix[6]arene (SCX6) scaffolds that exhibit mechanochromism and thermochromism have been developed. An introduction of a supramolecular host promises a variety of applications in diverse areas, which makes them fascinating. Largely hydrogen bonding as well as π···π interactions are responsible for the host-guest complexation. The complex shows partial encapsulation of the guest with one of the phenyl rings of chalcone (guest) is held inside the SCX6 cavity, whilst other phenyl rings that exclude the cavity are hydrogen-bonded to sulfonate portals of the host. The hydrogen bonding conducing such complexation triggers proton transfer engendering a mechanochromic switch. The complexes are further characterized by a variety of experiments such as cyclic voltammetry (CV), steady-state fluorescence, vibrational spectroscopy, and 1H or 2D NMR (NOESY) spectroscopy experiments. Detailed structure furnished through the NMR shows deshielding of the Ha-e (guest) protons whereas, the hydroxyl protons from the host experience shielding as evidenced from the 1H NMR spectra. These inferences have further been corroborated through the density functional theory. Electrochemical investigations suggested an irreversible one-electron transfer in the host-guest binding. The characteristic 'frequency shift' for the intense carbonyl vibration in the infrared spectra, which can be correlated to the kinetic energy density parameter, G(r), in the quantum theory of atoms in molecules (QTAIM).
Collapse
Affiliation(s)
- Sanhita V Patil
- Department of Chemistry, Savitribai Phule Pune University, Pune, 411007, India.
| | - Shridhar P Gejji
- Department of Chemistry, Savitribai Phule Pune University, Pune, 411007, India.
| | - Dipalee D Malkhede
- Department of Chemistry, Savitribai Phule Pune University, Pune, 411007, India.
| |
Collapse
|
8
|
|
9
|
Shi B, Zhao X, Chai Y, Qin P, Qu W, Lin Q, Zhang Y. Detection of L‐Aspartic Acid and L‐Glutamic Acid in Water Using a Fluorescent Nanoparticle Constructed by Pillar[5]arene‐Based Molecular Recognition. ChemistrySelect 2022. [DOI: 10.1002/slct.202200757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Bingbing Shi
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Eco-environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 P. R. China
| | - Xing‐Xing Zhao
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Eco-environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 P. R. China
| | - Yongping Chai
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Eco-environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 P. R. China
| | - Peng Qin
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Eco-environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 P. R. China
| | - Wen‐Juan Qu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Eco-environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 P. R. China
| | - Qi Lin
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Eco-environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 P. R. China
| | - You‐Ming Zhang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Eco-environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 P. R. China
- Gansu Natural Energy Research Institute Lanzhou Gansu 730046 P. R. China
| |
Collapse
|
10
|
Onishi K, Ohtani S, Kato K, Fa S, Sakata Y, Akine S, Ogasawara M, Asakawa H, Nagano S, Takashima Y, Mizuno M, Ogoshi T. State- and water repellency-controllable molecular glass of pillar[5]arenes with fluoroalkyl groups by guest vapors. Chem Sci 2022; 13:4082-4087. [PMID: 35440984 PMCID: PMC8985507 DOI: 10.1039/d2sc00828a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/03/2022] [Indexed: 01/29/2023] Open
Abstract
Molecular glasses are low-molecular-weight organic compounds that are stable in the amorphous state at room temperature. Herein, we report a state- and water repellency-controllable molecular glass by n-alkane guest vapors. We observed that a macrocyclic host compound pillar[5]arene with the C2F5 fluoroalkyl groups changes from the crystalline to the amorphous state (molecular glass) by heating above its melting point and then cooling to room temperature. The pillar[5]arene molecular glass shows reversible transitions between amorphous and crystalline states by uptake and release of the n-alkane guest vapors, respectively. Furthermore, the n-alkane guest vapor-induced reversible changes in the water contact angle were also observed: water contact angles increased and then reverted back to the original state by the uptake and release of the n-alkane guest vapors, respectively, along with the changes in the chemical structure and roughness on the surface of the molecular glass. The water repellency of the molecular glass could be controlled by tuning the uptake ratio of the n-alkane guest vapor. Pillar[5]arenes with C2F5 substituents showed reversible amorphous–crystal transitions by uptake and release of n-alkane vapors. The amorphous–crystal transitions triggered macroscopic property change such as water repellency.![]()
Collapse
Affiliation(s)
- Katsuto Onishi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Shixin Fa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Yoko Sakata
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan.,Graduate School of Natural Science and Technology, Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| | - Shigehisa Akine
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan.,Graduate School of Natural Science and Technology, Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| | - Moe Ogasawara
- Graduate School of Natural Science and Technology, Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| | - Hitoshi Asakawa
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan.,Graduate School of Natural Science and Technology, Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan.,Nanomaterials Research Institute, Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| | - Shusaku Nagano
- Department of Chemistry, College of Science, Rikkyo University 3-34-1 Nishi-Ikebukuro, Toshima Tokyo 171-8501 Japan
| | - Yoshinori Takashima
- Department of Macromolecular Science, Graduate School of Science and Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University Toyonaka Osaka 560-0043 Japan.,Institute for Advanced Co-Creation Studies, Osaka University Suita Osaka 565-0871 Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University Suita Osaka 565-0871 Japan
| | - Motohiro Mizuno
- Graduate School of Natural Science and Technology, Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan.,Nanomaterials Research Institute, Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan .,WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| |
Collapse
|
11
|
Shi B, Chai Y, Qin P, Zhao XX, Li W, Zhang YM, Wei TB, Lin Q, Yao H, Qu WJ. Detection of aliphatic aldehydes by a pillar[5]arene-based fluorescent supramolecular polymer with vaporchromic behavior. Chem Asian J 2022; 17:e202101421. [PMID: 35037734 DOI: 10.1002/asia.202101421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/12/2022] [Indexed: 11/10/2022]
Abstract
The detection of volatile aliphatic aldehydes is of significance because of their chemical toxicity, physical volatility and widespread applications in chemical industrial processes. In this work, the direct detection of aliphatic aldehydes is tackled using a fluorescent supramolecular polymer with vaporchromic behavior which is contructed by pillar[5]arene-based host-guest intereactions. Thin films with strong orange-yellow fluorescence are prepared by coating the linear supramolecular polymer on glass sheets. When the thin films are exposed to aliphatic aldehydes with different carbon chain lengths, they can selectivly sensing n -butyraldehyde ( C 4 ) and caprylicaldehyde ( C 8 ), accompanied by fluorescence quenching, indicating that the supramolecular polymer is a highly selective vapochromic response material for aliphatic aldehydes with long alkyl chains.
Collapse
Affiliation(s)
- Bingbing Shi
- Northwest Normal University, college of chemistry and chemical engineering, 967 Anning East Road, 730070, Lanzhou, CHINA
| | - Yongping Chai
- Northwest Normal University, college of chemistry and chemical engineering, CHINA
| | - Peng Qin
- Northwest Normal University, college of chemistry and chemical engineering, CHINA
| | - Xing-Xing Zhao
- Northwest Normal University, college of chemistry and chemical engineering, CHINA
| | - Weichun Li
- Northwest Normal University, college of chemistry and chemical engineering, CHINA
| | - You-Ming Zhang
- Northwest Normal University, college of chemistry and chemical engineering, CHINA
| | - Tai-Bao Wei
- Northwest Normal University, college of chemistry and chemical engineering, CHINA
| | - Qi Lin
- Northwest Normal University, college of chemistry and chemical engineering, CHINA
| | - Hong Yao
- Northwest Normal University, college of chemistry and chemical engineering, CHINA
| | - Wen-Juan Qu
- Northwest Normal University, college of chemistry and chemical engineering, CHINA
| |
Collapse
|
12
|
Panigrahi A, Mandal SC, Pathak B, Sarma TK. Discriminative Detection of Aliphatic, Electron‐Rich and Electron‐Deficient Aromatic Volatile Organic Contaminants Using Conjugated Polymeric Fluorescent Nanoaggregates with Aggregation Induced Emission Characteristics. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202100391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Abhiram Panigrahi
- Discipline of Chemistry Indian Institute of Technology Indore Simrol, Khandwa Road Indore 453552 India
| | - Shyama C. Mandal
- Discipline of Chemistry Indian Institute of Technology Indore Simrol, Khandwa Road Indore 453552 India
| | - Biswarup Pathak
- Discipline of Chemistry Indian Institute of Technology Indore Simrol, Khandwa Road Indore 453552 India
- Discipline of Metallurgy Engineering and Materials Science Indian Institute of Technology Indore Simrol, Khandwa Road Indore 453552 India
| | - Tridib K. Sarma
- Discipline of Chemistry Indian Institute of Technology Indore Simrol, Khandwa Road Indore 453552 India
| |
Collapse
|
13
|
Liang QF, Zheng HW, Yang DD, Zheng XJ. A triphenylamine derivative and its Cd( ii) complex with high-contrast mechanochromic luminescence and vapochromism. CrystEngComm 2022. [DOI: 10.1039/d1ce01319j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A triphenylamine derivative and its Cd(ii) complex exhibited predominant mechanochromism and vapochromism with high-contrast color and emission changes.
Collapse
Affiliation(s)
- Qiong-Fang Liang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Han-Wen Zheng
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Dong-Dong Yang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Xiang-Jun Zheng
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
14
|
Liquid-crystalline 1,4-benzoquinone derivative: Self-assembling behavior and redox properties. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Shang J, Gong H, Zhang Q, Cui Z, Li S, Lv P, Pan T, Ge Y, Qi Z. The dynamic covalent reaction based on diselenide-containing crown ether irradiated by visible light. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Wu GY, Liang C, Hu YX, Wang XQ, Yin GQ, Lu Z. Hierarchical self-assembly of discrete bis-[2]pseudorotaxane metallacycle with bis-pillar[5]arene via host-guest interactions and their redox-responsive behaviors. RSC Adv 2020; 11:1187-1193. [PMID: 35423686 PMCID: PMC8693504 DOI: 10.1039/d0ra09920a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/20/2020] [Indexed: 11/21/2022] Open
Abstract
A discrete rhomboidal metallacycle R functionalized with bis-[2]pseudorotaxane of [Cu(phenanthroline)2]+ derivatives was successfully synthesized via coordination-driven self-assembly. Furthermore, the host-guest complexation of such a bis-[2]pseudorotaxane metallacycle with a bis-pillar[5]arene (bisP5) allowed for the formation of a new family of cross-linked supramolecular polymers R⊃(bisP5)2, which displayed interesting redox-responsive properties. By taking advantage of the substantial structural differences between the coordination geometries of [Cu(phenanthroline)2]+ and [Cu(phenanthroline)2]2+, the weight-average diffusion coefficients D of the supramolecular polymer were adjusted through changing the redox state of the Cu(i)/Cu(ii) complexes.
Collapse
Affiliation(s)
- Gui-Yuan Wu
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University Wuhu Anhui 241002 China
| | - Chao Liang
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University Wuhu Anhui 241002 China
| | - Yi-Xiong Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663 N. Zhongshan Road Shanghai China
| | - Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663 N. Zhongshan Road Shanghai China
| | - Guang-Qiang Yin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663 N. Zhongshan Road Shanghai China
| | - Zhou Lu
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University Wuhu Anhui 241002 China
| |
Collapse
|
17
|
Vapochromism of Organic Crystals Based on Macrocyclic Compounds and Inclusion Complexes. Symmetry (Basel) 2020. [DOI: 10.3390/sym12111903] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Vapochromic materials, which change color and luminescence when exposed to specific vapors and gases, have attracted considerable attention in recent years owing to their potential applications in a wide range of fields such as chemical sensors and environmental monitors. Although the mechanism of vapochromism is still unclear, several studies have elucidated it from the viewpoint of crystal engineering. In this mini-review, we investigate recent advances in the vapochromism of organic crystals. Among them, macrocyclic molecules and inclusion complexes, which have apparent host–guest interactions with analyte molecules (specific vapors and gases), are described. When the host compound is properly designed, its cavity size and symmetry change in response to guest molecules, influencing the optical properties by changing the molecular inclusion and recognition abilities. This information highlights the importance of structure–property relationships resulting from the molecular recognition at the solid–vapor interface.
Collapse
|