1
|
Beato Z, Ihle SH, Zhu X. Mild and Effective Method for the Nickel-Catalyzed Arylation of Glycosyl Thiols in Aqueous Surfactant Solution. J Org Chem 2024; 89:17502-17517. [PMID: 39530156 PMCID: PMC11629379 DOI: 10.1021/acs.joc.4c02233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Aryl thioglycosides have broad applicability as both glycosyl donors and glycomimetic compounds. Their synthesis via the cross-coupling of glycosyl thiols with aryl halides has become a popular method for their construction because it allows better selectivity for anomeric configuration as well as a wider functional group tolerance compared to traditional methods. Herein, we report a nickel-catalyzed method for the synthesis of aryl thioglycosides which utilizes an aqueous micellar environment as the reaction medium. This alternative method allows for mild conditions while circumventing expensive palladium, leading to the successful synthesis of over 30 aryl thioglycosides, including challenging 1,2-cis thioglycoside products.
Collapse
Affiliation(s)
- Zoe Beato
- Centre
for Synthesis and Chemical Biology, UCD School of Chemistry, University College Dublin, Belfield Dublin 4, Ireland
- BiOrbic,
Bioeconomy SFI Research Centre, University
College Dublin, Belfield Dublin 4, Ireland
| | - Sally Howard Ihle
- Centre
for Synthesis and Chemical Biology, UCD School of Chemistry, University College Dublin, Belfield Dublin 4, Ireland
| | - Xiangming Zhu
- Centre
for Synthesis and Chemical Biology, UCD School of Chemistry, University College Dublin, Belfield Dublin 4, Ireland
- BiOrbic,
Bioeconomy SFI Research Centre, University
College Dublin, Belfield Dublin 4, Ireland
| |
Collapse
|
2
|
Azeem Z, Dubey S, Mandal PK. Pd-Catalyzed Synthesis of 1-(Hetero)aryl Thioglycosides: Strategy for the Trapping of an Acyl Group of Glycosylthioesters by Coupling of Bis-Electrophilic-Nucleophilic Partners. J Org Chem 2024; 89:15777-15792. [PMID: 39405505 DOI: 10.1021/acs.joc.4c01867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Herein, we describe a stereoretentive palladium-catalyzed cross-coupling between the in situ-generated glycosyl thiolate anion and diverse (hetero)aryl iodides at room temperature for creating the library of (hetero)aryl thioglycosides. The key to success is the judicious pairing of bis-electrophilic-nucleophilic partners with a variety of thioesters in an atom-economical way in which both the glycosyl thiolate anion and the acylium cation are incorporated into the final analogue. The advantage of this method is the acyl transfer on various nucleophilic partners, including a hydroxyl, a primary or secondary amine, an amino acid, and the biologically active hSGLT1 inhibitor.
Collapse
Affiliation(s)
- Zanjila Azeem
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shashiprabha Dubey
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pintu Kumar Mandal
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Li F, Liu H, Xing W, Zhang Q, Wang L. Electrochemical nickel-catalyzed cross-coupling of glycosyl thiols with preactivated phenols and ketones. Org Biomol Chem 2024; 22:3597-3601. [PMID: 38625707 DOI: 10.1039/d4ob00442f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
An efficient electrochemical nickel-catalyzed cross-coupling reaction has been reported here for the synthesis of S-glycosides from preactivated phenols and ketones under mild conditions. Various glycosyl thiols, including unprotected sugar, and a diverse range of aryl/alkenyl triflates, including some complex biorelevant phenols and ketones, were well tolerated in this method.
Collapse
Affiliation(s)
- Fuxin Li
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China.
| | - Hui Liu
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China.
| | - Wanyu Xing
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China.
| | - Qingju Zhang
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China.
| | - Liming Wang
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China.
| |
Collapse
|
4
|
Shen L, Monasson O, Peroni E, Le Bideau F, Messaoudi S. Electrochemical Nickel-Catalyzed Selective Inter- and Intramolecular Arylations of Cysteine-Containing Peptides. Angew Chem Int Ed Engl 2023; 62:e202315748. [PMID: 37906608 DOI: 10.1002/anie.202315748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/02/2023]
Abstract
Here we report a simple electrochemical route towards the synthesis of S-arylated peptides by a site selective coupling of peptides with aryl halides under base free conditions. This approach demonstrates the power of electrochemistry to access both highly complex peptide conjugates and cyclic peptides.
Collapse
Affiliation(s)
- Linhua Shen
- Université Paris-Saclay, CNRS, BioCIS, 92290, Orsay, France
| | - Olivier Monasson
- Université Paris-Saclay, CNRS, BioCIS, 92290, Orsay, France
- CY Cergy Paris Université, CNRS, BioCIS, 95000, Cergy Pontoise, France
| | - Elisa Peroni
- Université Paris-Saclay, CNRS, BioCIS, 92290, Orsay, France
- CY Cergy Paris Université, CNRS, BioCIS, 95000, Cergy Pontoise, France
| | | | | |
Collapse
|
5
|
Le Zhang, He S, Hou J, Ye M, Chen J, Lv G, Huang T, Yang Z, Wu Y. Visible-light-mediated synthesis of non-anomeric S-aryl glycosides via a photoactive electron-donor-acceptor complex. Chem Commun (Camb) 2023; 59:13759-13762. [PMID: 37916505 DOI: 10.1039/d3cc03474g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
A visible-light-mediated glycosylation reaction between glycosyl redox-active esters and disulfides has been reported, through which a series of S-aryl glycosides were obtained in good yields with satisfactory stereoselectivity. The preliminary mechanistic studies revealed that this transformation proceeded via an EDA complex. Moreover, the potential application value was demonstrated in the late-stage functionalisation of drug molecules and a gram-scale experiment.
Collapse
Affiliation(s)
- Le Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China.
| | - Shiyun He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China.
| | - Jinyu Hou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China.
| | - Meiling Ye
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China.
| | - Jian Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China.
| | - Guanghui Lv
- Department of Pharmacy, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Tianle Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China.
| | - Zhongzhen Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China.
| | - Yong Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China.
| |
Collapse
|
6
|
Sun Z, Yan W, Xie L, Liu W, Xu C, Chen FE. A Robust Copper-Catalyzed Cross-Coupling of Glycosyl Thiosulfonate and Boronic Acids Enables the Construction of Thioglycosides. Org Lett 2023; 25:5714-5718. [PMID: 37530179 DOI: 10.1021/acs.orglett.3c01798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
An efficient and stereoretentive copper-catalyzed cross-coupling of glycosyl thiosulfonate and boronic acid for the construction of thioglycosides is described. The good functional group compatibility of this method allows the preparation of many bioactive aryl/alkenyl thioglycosides, including the hSGLT1 inhibitor.
Collapse
Affiliation(s)
- Zuyao Sun
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Qingyuan Innovation Laboratory, Quanzhou 362801, China
| | - Weitao Yan
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Lihuang Xie
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Wenchao Liu
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Chunfa Xu
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, CAS, Shanghai 200032, China
| | - Fen-Er Chen
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Qingyuan Innovation Laboratory, Quanzhou 362801, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Fudan University, Shanghai 200433, China
| |
Collapse
|
7
|
Azeem Z, Mandal PK. Atom-Economic Synthesis of Unsymmetrical gem-Diarylmethylthio/Seleno Glycosides via Base Mediated C(O)-S/Se Bond Cleavage and Acyl Transfer Approach of Glycosylthio/Selenoacetates. J Org Chem 2023; 88:1695-1712. [PMID: 36633914 DOI: 10.1021/acs.joc.2c02704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Herein, we invented the Cs2CO3-mediated atom economic method that streamlines the scission of the C(O)-S/Se bond involving the in situ generation of an anomeric thiolate/selenolate anion, which reacted with p-QMs to yield novel unsymmetrical gem-diarylmethylthio/seleno glycosides while retaining the anomeric stereochemistry. Notably, the key features of this protocol involve unprecedented long-range acyl transfer (from S/Se to O), thus affording acylation of the final product which is not yet reported by classical methods. This straightforward protocol offers a mild, short reaction time, synthetically simple approach, and compatibility with 8 types of sugar along with phenylthio/benzylseleno esters.
Collapse
Affiliation(s)
- Zanjila Azeem
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pintu Kumar Mandal
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
8
|
Venkatesh R, Tiwari V, Kandasamy J. Copper(I)-Catalyzed Sandmeyer-Type S-Arylation of 1-Thiosugars with Aryldiazonium Salts under Mild Conditions. J Org Chem 2022; 87:11414-11432. [PMID: 35994736 DOI: 10.1021/acs.joc.2c00930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Preparation of S-aryl thioglycosides from 1-thiosugars via S-arylation was demonstrated under mild reaction conditions. A wide range of protected and unprotected 1-thiosugars derived from glucose, glucosamine, galactose, mannose, ribose, maltose, and lactose underwent cross-coupling reactions with functionalized aryldiazonium salts in the presence of copper(I) chloride and DBU. The desired products were obtained in 55-88% yields within 5 min. Various functional groups, including halogens, were tolerated under standard reaction conditions. Synthesis of the biologically relevant antidiabetic dapagliflozin S-analogue and arbutin S-analogues (tyrosinase inhibitors) was demonstrated.
Collapse
Affiliation(s)
- Rapelly Venkatesh
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Varsha Tiwari
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Jeyakumar Kandasamy
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
9
|
LI L, Mahri L, de Robichon M, Fatthalla M, Ferry A, MESSAOUDI S. Directed Dehydrogenative Copper‐Catalyzed C‐H Thiolation in Pseudo‐Anomeric Position of Glycals using Thiol and Thiosugar Partners. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Li Z, Shuai B, Ma C, Fang P, Mei T. Nickel‐Catalyzed
Electroreductive Syntheses of Triphenylenes Using
ortho
‐Dihalobenzene‐Derived
Benzynes. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zhao‐Ming Li
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Bin Shuai
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Cong Ma
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Ping Fang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Tian‐Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
11
|
Zhu M, Ghouilem J, Messaoudi S. Visible-Light-Mediated Stadler-Ziegler Arylation of Thiosugars with Anilines. ACS ORGANIC & INORGANIC AU 2022; 2:351-358. [PMID: 36855591 PMCID: PMC9955296 DOI: 10.1021/acsorginorgau.2c00006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here, we report a one-pot Stadler-Ziegler reaction toward the synthesis of 1-thioglycosides in good yield from commercially available anilines and (un)protected 1-glycosyl thiols. This simple and mild approach employs the photoredox catalyst [Ru(bpy)3](PF6)2 under visible light.
Collapse
|
12
|
Li C, Zhang Y, Sun W. Nickel-Catalyzed Paired Electrochemical Cross-Coupling of Aryl Halides with Nucleophiles. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1581-0934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractElectrochemistry has recently gained increased attention as a versatile strategy for achieving challenging transformations at the forefront of synthetic organic chemistry. However, most electrochemical transformations only employ one electrode (anodic oxidation or cathodic reduction) to afford the desired products, while the chemistry that occurs at the counter electrode yields stoichiometric waste. In contrast, paired electrochemical reactions can synchronously utilize the anodic and cathodic reactions to deliver the desired product, thus improving the atom economy and energy efficiency of the electrolytic process. This review gives an overview of recent advances in nickel-catalyzed paired electrochemical cross-coupling reactions of aryl/alkenyl halides with different nucleophiles.1 Introduction2 Nickel-Catalyzed Cross-Coupling Reactions2.1 C–C Bond Formation2.2 C–N Bond Formation2.3 C–S/O Bond Formation2.4 C–P Bond Formation3 Conclusion
Collapse
Affiliation(s)
- Chao Li
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University
- National Institute of Biological Sciences
| | - Yong Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University
- National Institute of Biological Sciences
| | - Wenxuan Sun
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University
- National Institute of Biological Sciences
| |
Collapse
|
13
|
Ma C, Fang P, Liu ZR, Xu SS, Xu K, Cheng X, Lei A, Xu HC, Zeng C, Mei TS. Recent advances in organic electrosynthesis employing transition metal complexes as electrocatalysts. Sci Bull (Beijing) 2021; 66:2412-2429. [PMID: 36654127 DOI: 10.1016/j.scib.2021.07.011] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 01/20/2023]
Abstract
Organic electrosynthesis has been widely used as an environmentally conscious alternative to conventional methods for redox reactions because it utilizes electric current as a traceless redox agent instead of chemical redox agents. Indirect electrolysis employing a redox catalyst has received tremendous attention, since it provides various advantages compared to direct electrolysis. With indirect electrolysis, overpotential of electron transfer can be avoided, which is inherently milder, thus wide functional group tolerance can be achieved. Additionally, chemoselectivity, regioselectivity, and stereoselectivity can be tuned by the redox catalysts used in indirect electrolysis. Furthermore, electrode passivation can be avoided by preventing the formation of polymer films on the electrode surface. Common redox catalysts include N-oxyl radicals, hypervalent iodine species, halides, amines, benzoquinones (such as DDQ and tetrachlorobenzoquinone), and transition metals. In recent years, great progress has been made in the field of indirect organic electrosynthesis using transition metals as redox catalysts for reaction classes including C-H functionalization, radical cyclization, and cross-coupling of aryl halides-each owing to the diverse reactivity and accessible oxidation states of transition metals. Although various reviews of organic electrosynthesis are available, there is a lack of articles that focus on recent research progress in the area of indirect electrolysis using transition metals, which is the impetus for this review.
Collapse
Affiliation(s)
- Cong Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ping Fang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhao-Ran Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shi-Shuo Xu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Kun Xu
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Xu Cheng
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies, Wuhan University, Wuhan 430072, China.
| | - Hai-Chao Xu
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Chengchu Zeng
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
14
|
Fatthalla M, Grimblat N, Brachet E, Alami M, Gandon V, Le Bideau F, Messaoudi S. Synthesis of axially chiral biaryl thioglycosides through thiosugar-directed Pd-catalyzed asymmetric C-H activation. Chem Commun (Camb) 2021; 57:10355-10358. [PMID: 34533145 DOI: 10.1039/d1cc03971g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we report for the first time that the thiosugar moiety can be used both as a directing group enabling the regioselective activation of a C-H bond of biaryl scaffolds and as a chiral source inducing axial chirality. Our approach enables the easy generation of complex thioglycoside atropoisomers, thus paving the way to new products of potential biological interest.
Collapse
Affiliation(s)
- Maha Fatthalla
- Department of Chemistry, Faculty of Science, Helwan University, 11795 Ain Helwan, Cairo, Egypt.,Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France.
| | - Nicolas Grimblat
- Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, route de Saclay, 91128 Palaiseau Cedex, France.,Instituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531 S2002LRK, Rosario, Republica Argentina
| | - Etienne Brachet
- Université de Paris, Faculté de Pharmacie de Paris, UMR CNRS 8038 (CiTCoM), 4 avenue de l'Observatoire, Paris FR-75006, France
| | - Mouad Alami
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France.
| | - Vincent Gandon
- Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, route de Saclay, 91128 Palaiseau Cedex, France.,Université Paris-Saclay, CNRS, ICMMO, 91405, Orsay Cedex, France
| | - Franck Le Bideau
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France.
| | - Samir Messaoudi
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France.
| |
Collapse
|
15
|
Ding YN, Huang YC, Shi WY, Zheng N, Wang CT, Chen X, An Y, Zhang Z, Liang YM. Modular Synthesis of Aryl Thio/Selenoglycosides via the Catellani Strategy. Org Lett 2021; 23:5641-5646. [PMID: 34251824 DOI: 10.1021/acs.orglett.1c01723] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We described a novel palladium-catalyzed domino procedure for the preparation of (hetero)aryl thio/selenoglycosides. Readily available (hetero)aryl iodides and easily accessible 1-thiosugars/1-selenosugars are utilized as the substrates. Meanwhile, 10 types of sugars are quite compatible with this reaction with good regio- and stereoselectivity, high efficiency, and broad applicability (up to 89%, 53 examples). This method enables the straightforward formation of the C(sp2)-S/Se bond of (hetero)aryl thio/selenoglycosides.
Collapse
Affiliation(s)
- Ya-Nan Ding
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yan-Chong Huang
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Wei-Yu Shi
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Nian Zheng
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Cui-Tian Wang
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xi Chen
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yang An
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zhe Zhang
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
16
|
Liu Y, Yu XB, Zhang XM, Zhong Q, Liao LH, Yan N. Transition-metal-free synthesis of aryl 1-thioglycosides with arynes at room temperature. RSC Adv 2021; 11:26666-26671. [PMID: 35479995 PMCID: PMC9037310 DOI: 10.1039/d1ra04013h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/22/2021] [Indexed: 11/21/2022] Open
Abstract
A mild, convenient and transition-metal-free protocol for the synthesis of aryl 1-thioglycosides is presented via arynes generated in situ combined with glycosyl thiols in the presence of TBAF(tBuOH)4. The methodology provides a general and efficient way to prepare a series of functionalized thioglycosides in good to excellent yields with a perfect control of the anomeric configuration at room temperature. In addition, the reaction conditions tolerate a variety of the pentoses and hexoses, and the reaction also performs smoothly on protected monosaccharides and disaccharides.
Collapse
Affiliation(s)
- Yao Liu
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University Nanchang 330022 P. R. China
| | - Xiao-Bing Yu
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University Nanchang 330022 P. R. China
| | - Xiang-Mei Zhang
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University Nanchang 330022 P. R. China
| | - Qian Zhong
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University Nanchang 330022 P. R. China
| | - Li-Hua Liao
- College of Chemistry and Chemical Engineering, Jiangxi Normal University Nanchang 330022 P. R. China
| | - Nan Yan
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University Nanchang 330022 P. R. China .,College of Chemistry and Chemical Engineering, Jiangxi Normal University Nanchang 330022 P. R. China
| |
Collapse
|
17
|
Novaes LFT, Liu J, Shen Y, Lu L, Meinhardt JM, Lin S. Electrocatalysis as an enabling technology for organic synthesis. Chem Soc Rev 2021; 50:7941-8002. [PMID: 34060564 PMCID: PMC8294342 DOI: 10.1039/d1cs00223f] [Citation(s) in RCA: 431] [Impact Index Per Article: 107.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Electrochemistry has recently gained increased attention as a versatile strategy for achieving challenging transformations at the forefront of synthetic organic chemistry. Electrochemistry's unique ability to generate highly reactive radical and radical ion intermediates in a controlled fashion under mild conditions has inspired the development of a number of new electrochemical methodologies for the preparation of valuable chemical motifs. Particularly, recent developments in electrosynthesis have featured an increased use of redox-active electrocatalysts to further enhance control over the selective formation and downstream reactivity of these reactive intermediates. Furthermore, electrocatalytic mediators enable synthetic transformations to proceed in a manner that is mechanistically distinct from purely chemical methods, allowing for the subversion of kinetic and thermodynamic obstacles encountered in conventional organic synthesis. This review highlights key innovations within the past decade in the area of synthetic electrocatalysis, with emphasis on the mechanisms and catalyst design principles underpinning these advancements. A host of oxidative and reductive electrocatalytic methodologies are discussed and are grouped according to the classification of the synthetic transformation and the nature of the electrocatalyst.
Collapse
Affiliation(s)
- Luiz F T Novaes
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Zhu M, Messaoudi S. Diastereoselective Decarboxylative Alkynylation of Anomeric Carboxylic Acids Using Cu/Photoredox Dual Catalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01600] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mingxiang Zhu
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay, Malabry, France
| | - Samir Messaoudi
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay, Malabry, France
| |
Collapse
|
19
|
Liu D, Liu Z, Ma C, Jiao K, Sun B, Wei L, Lefranc J, Herbert S, Mei T. Nickel‐Catalyzed
N
‐Arylation of
NH
‐Sulfoximines with Aryl Halides via Paired Electrolysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016310] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Dong Liu
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Zhao‐Ran Liu
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Cong Ma
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Ke‐Jin Jiao
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Bing Sun
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Lei Wei
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Julien Lefranc
- Nuvisan Innovation Campus Berlin GmbH 13353 Berlin Germany
| | - Simon Herbert
- Pharmaceuticals, Research and Development Bayer AG 13353 Berlin Germany
| | - Tian‐Sheng Mei
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
20
|
Liu D, Liu ZR, Ma C, Jiao KJ, Sun B, Wei L, Lefranc J, Herbert S, Mei TS. Nickel-Catalyzed N-Arylation of NH-Sulfoximines with Aryl Halides via Paired Electrolysis. Angew Chem Int Ed Engl 2021; 60:9444-9449. [PMID: 33576561 DOI: 10.1002/anie.202016310] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/31/2021] [Indexed: 11/08/2022]
Abstract
A novel strategy for the N-arylation of NH-sulfoximines has been developed by merging nickel catalysis and electrochemistry (in an undivided cell), thereby providing a practical method for the construction of sulfoximine derivatives. Paired electrolysis is employed in this protocol, so a sacrificial anode is not required. Owing to the mild reaction conditions, excellent functional group tolerance and yield are achieved. A preliminary mechanistic study indicates that the anodic oxidation of a NiII species is crucial to promote the reductive elimination of a C-N bond from the resulting NiIII species at room temperature.
Collapse
Affiliation(s)
- Dong Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Zhao-Ran Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Cong Ma
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Ke-Jin Jiao
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Bing Sun
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Lei Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Julien Lefranc
- Nuvisan Innovation Campus Berlin GmbH, 13353, Berlin, Germany
| | - Simon Herbert
- Pharmaceuticals, Research and Development, Bayer AG, 13353, Berlin, Germany
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
21
|
Dimakos V, Taylor MS. Recent advances in the direct O-arylation of carbohydrates. Org Biomol Chem 2021; 19:514-524. [PMID: 33331387 DOI: 10.1039/d0ob02009e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Methods for the O-arylation of hydroxyl and hemiacetal groups in carbohydrates via C(sp2)-O bond formation are discussed. Such methods provide an alternative disconnection to the traditional approach of nucleophilic substitution between a sugar-derived electrophile and a phenol or phenoxide nucleophile. They have led to new opportunities for stereoselectivity, site-selectivity and chemoselectivity in the preparation of O-aryl glycosides and carbohydrate-derived aryl ethers, compounds that are useful for a broad range of applications in medicinal chemistry, glycobiology and organic synthesis.
Collapse
Affiliation(s)
- Victoria Dimakos
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON M5S 3H6, Canada.
| | - Mark S Taylor
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON M5S 3H6, Canada.
| |
Collapse
|
22
|
Gale-Day ZJ. Recent Advances in Metal-Catalyzed, Electrochemical Coupling Reactions of sp2 Halides/Boronic Acids and sp3 Centers. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1706085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
AbstractTraditionally, metal-catalyzed cross-coupling reactions rely on stable but expensive metals, such as palladium. However, the recent development of synthetic organic electrochemistry allows for in situ redox manipulations, expanding the use of cheaper, abundant and sustainable metals, such as nickel and copper as efficient cross-coupling catalysts. This short review covers the recent advances in metal-catalyzed electrochemical coupling reactions, with a focus on reactions of sp2 electrophiles and nucleophiles with sp3 coupling partners to form both C–C and C–heteroatom bonds.1 Introduction2 Nickel-Catalyzed C–C sp2–sp3 Coupling Reactions3 Coupling of Aryl Groups with Heteroatomic Nuclei4 Conclusion
Collapse
|