1
|
Mondal S, Jana R. Green light-mediated dual eosin Y/Pd II-catalyzed C(sp 2)-H arylation of N-H unprotected 2-arylquinazolinones. Org Biomol Chem 2024; 22:5540-5545. [PMID: 38916115 DOI: 10.1039/d4ob00779d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
We report herein an eosin Y/Pd(II) dual catalytic approach for regio- and chemoselective C(sp2)-H monoarylation of N-H unprotected 2-phenyl quinazolinone derivatives under green light irradiation with no necessity for any base/additive/external oxidant. The free N-H moiety was post-modified for quinazolinone scaffold diversification and C-H annulation.
Collapse
Affiliation(s)
- Shuvam Mondal
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India
| | - Ranjan Jana
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India.
| |
Collapse
|
2
|
Galicia J, McDonald NR, Bennett CW, He J, Glossbrenner MD, Romero EA. Exogenous photocatalyst-free aryl radical generation from diaryliodonium salts and use in metal-catalyzed C-H arylation. Chem Commun (Camb) 2024; 60:6929-6932. [PMID: 38884327 DOI: 10.1039/d4cc01259c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
We demonstrate (1) detectable halogen bonding is not critical for enabling light-driven radical generation from diaryliodonium salts and (2) radicals generated by this route can be captured by transition-metals for C-H arylation reactions. These results are the first step toward developing new metal-catalyzed aryl radical couplings without exogenous photocatalysts.
Collapse
Affiliation(s)
- Jonathan Galicia
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0309, USA.
| | - Nicholas R McDonald
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0309, USA.
| | - Christopher W Bennett
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0309, USA.
| | - Jiajun He
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0309, USA.
| | - Mark D Glossbrenner
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0309, USA.
| | - Erik A Romero
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0309, USA.
| |
Collapse
|
3
|
Shahid M, Muthuraja P, Gopinath P. Substituent-controlled regioselective arylation of carbazoles using dual catalysis. Org Biomol Chem 2024; 22:753-758. [PMID: 38165787 DOI: 10.1039/d3ob01827j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Regioselective arylation of carbazoles is reported using dual palladium-photoredox catalysis. Controlled monoarylation and diarylation of symmetrical and unsymmetrical carbazoles were achieved under mild reaction conditions with a broad substrate scope and functional group tolerance. Steric and electronic control the regioselectivity of the arylation of unsymmetrical carbazoles. Late-stage functionalization of a caprofen drug derivative and large-scale synthesis of mono- and di-arylated carbazoles were demonstrated to showcase the synthetic versatility of the method. Finally, we also showcased the synthesis of hyellazole analogues (a marine alkaloid) in a short route using our strategy.
Collapse
Affiliation(s)
- M Shahid
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India.
| | - Perumal Muthuraja
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India.
| | - Purushothaman Gopinath
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India.
| |
Collapse
|
4
|
Shahid M, Punnya AJ, Babu SS, Sarkar S, Gopinath P. Dual Palladium-Photoredox-Mediated Regioselective Acylation of Carbazoles and Indolines. J Org Chem 2023; 88:13686-13698. [PMID: 37767971 DOI: 10.1021/acs.joc.3c01350] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
We have described a dual palladium-photoredox-catalyzed highly regioselective acylation of carbazoles and indolines using molecular oxygen as the green oxidant. The reaction shows a broad substrate scope and good functional group tolerance. Late-stage functionalization of a carprofen drug derivative, further manipulation of products, and gram-scale synthesis of the acylated products were illustrated to show the versatility of the method.
Collapse
Affiliation(s)
- M Shahid
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh 517507, India
| | - A J Punnya
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh 517507, India
| | - Sakamuri Sarath Babu
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh 517507, India
| | - Subhendu Sarkar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh 517507, India
| | - Purushothaman Gopinath
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh 517507, India
| |
Collapse
|
5
|
Das R, Kundu T, Basumatary J. Visible light mediated organocatalytic dehydrogenative aza-coupling of 1,3-diones using aryldiazonium salts. RSC Adv 2023; 13:3147-3154. [PMID: 36756411 PMCID: PMC9853514 DOI: 10.1039/d2ra07807d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023] Open
Abstract
An efficient protocol for diazenylation of 1,3-diones under photoredox conditions is presented herein. C-N bond forming Csp3 -H functionalization of cyclic and alkyl diones by unstable aryl diazenyl radicals is achieved through reaction with aryldiazonium tetrafluoroborates by organocatalysts under visible light irradiation. The reaction has wide substrate scope, gives excellent yields, and is also efficient in water as a green solvent. This method provides an easy access to aryldiazenyl derivatives that are useful key starting materials for the synthesis of aza heterocycles as well as potential pharmacophores.
Collapse
Affiliation(s)
- Ramanand Das
- Department of Chemistry, National Institute of Technology Sikkim Ravangla, South Sikkim PIN 737139 India
| | - Taraknath Kundu
- Department of Chemistry, National Institute of Technology Sikkim Ravangla, South Sikkim PIN 737139 India
| | - Joneswar Basumatary
- Department of Chemistry, Sikkim University Tadong, Daragaon, East Sikkim Gangtok PIN 737102 India
| |
Collapse
|
6
|
Saha PS, Gopinath P. Dual Palladium‐Photoredox catalyzed C‐H functionalization. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Purushothaman Gopinath
- Indian Institute of Science Education and Research Tirupati Chemistry Karkambadi Road 517507 Tirupati INDIA
| |
Collapse
|
7
|
Rocard L, Hannedouche J, Bogliotti N. Visible-Light-Initiated Palladium-Catalyzed Cross-coupling by PPh 3 Uncaging from an Azobenzene Ruthenium-Arene Complex. Chemistry 2022; 28:e202200519. [PMID: 35543416 PMCID: PMC9400985 DOI: 10.1002/chem.202200519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Indexed: 11/20/2022]
Abstract
Photo-release of triphenylphosphine from a sulfonamide azobenzene ruthenium-arene complex was exploited to activate PdII Cl2 into Pd0 catalyst, for the photo-initiation of Sonogashira cross-coupling. The transformation was initiated on demand - by using simple white LED strip lights - with a high temporal response and the ability to control reaction rate by changing the irradiation time. Various substrates were successfully applied to this photo-initiated cross-coupling, thus illustrating the wide functional-group tolerance of our photo-caged catalyst activator, without any need for sophisticated photochemistry apparatus.
Collapse
Affiliation(s)
- Lou Rocard
- Université Paris-Saclay, ENS Paris-Saclay, CNRSPhotophysique et Photochimie Supramoléculaires et Macromoléculaires91190Gif-sur-YvetteFrance
- Université Paris-Saclay, CNRSInstitut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO)91405Orsay CedexFrance
| | - Jérôme Hannedouche
- Université Paris-Saclay, CNRSInstitut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO)91405Orsay CedexFrance
| | - Nicolas Bogliotti
- Université Paris-Saclay, ENS Paris-Saclay, CNRSPhotophysique et Photochimie Supramoléculaires et Macromoléculaires91190Gif-sur-YvetteFrance
| |
Collapse
|
8
|
Sarkar T, Shah TA, Maharana PK, Debnath B, Punniyamurthy T. Dual Metallaphotoredox Catalyzed Directed C(sp2)‐H Functionalization: Access to C‐C/C‐Heteroatom Bonds. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tanumay Sarkar
- IIT Guwahati: Indian Institute of Technology Guwahati Chemistry INDIA
| | | | | | - Bijoy Debnath
- Indian Institute of Technology Guwahati Chemistry INDIA
| | | |
Collapse
|
9
|
Chilamari M, Immel JR, Chen PH, Alghafli BM, Bloom S. Flavin Metallaphotoredox Catalysis: Synergistic Synthesis in Water. ACS Catal 2022; 12:4175-4181. [DOI: 10.1021/acscatal.2c00773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
| | - Jacob R. Immel
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Pei-Hsuan Chen
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Bayan M. Alghafli
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Steven Bloom
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
10
|
Grover J, Prakash G, Goswami N, Maiti D. Traditional and sustainable approaches for the construction of C–C bonds by harnessing C–H arylation. Nat Commun 2022; 13:1085. [PMID: 35228555 PMCID: PMC8885660 DOI: 10.1038/s41467-022-28707-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 01/27/2022] [Indexed: 12/18/2022] Open
Abstract
Biaryl scaffolds are found in natural products and drug molecules and exhibit a wide range of biological activities. In past decade, the transition metal-catalyzed C–H arylation reaction came out as an effective tool for the construction of biaryl motifs. However, traditional transition metal-catalyzed C–H arylation reactions have limitations like harsh reaction conditions, narrow substrate scope, use of additives etc. and therefore encouraged synthetic chemists to look for alternate greener approaches. This review aims to draw a general overview on C–H bond arylation reactions for the formation of C–C bonds with the aid of different methodologies, majorly highlighting on greener and sustainable approaches. Transition-metal-catalyzed C–H arylations are an effective tool for the construction of biaryl motifs in an efficient and selective manner. Here the authors provide an overview of the state-of-the-art of the field and perspectives on emerging directions toward increased sustainability.
Collapse
|
11
|
Guo Z, Liu X, Che Y, Chen D, Xing H. One-Pot Dual Catalysis of a Photoactive Coordination Polymer and Palladium Acetate for the Highly Efficient Cross-Coupling Reaction via Interfacial Electron Transfer. Inorg Chem 2022; 61:2695-2705. [DOI: 10.1021/acs.inorgchem.1c03961] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhifen Guo
- Laboratory of Advanced Energy Materials, College of Chemistry, Northeast Normal University, Changchun 130021, P. R. China
| | - Xin Liu
- Laboratory of Advanced Energy Materials, College of Chemistry, Northeast Normal University, Changchun 130021, P. R. China
| | - Yan Che
- Laboratory of Advanced Energy Materials, College of Chemistry, Northeast Normal University, Changchun 130021, P. R. China
| | - Dashu Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, No. 26 Hexing Road, Harbin 150040, China
| | - Hongzhu Xing
- Laboratory of Advanced Energy Materials, College of Chemistry, Northeast Normal University, Changchun 130021, P. R. China
| |
Collapse
|
12
|
Chan AY, Perry IB, Bissonnette NB, Buksh BF, Edwards GA, Frye LI, Garry OL, Lavagnino MN, Li BX, Liang Y, Mao E, Millet A, Oakley JV, Reed NL, Sakai HA, Seath CP, MacMillan DWC. Metallaphotoredox: The Merger of Photoredox and Transition Metal Catalysis. Chem Rev 2021; 122:1485-1542. [PMID: 34793128 DOI: 10.1021/acs.chemrev.1c00383] [Citation(s) in RCA: 555] [Impact Index Per Article: 185.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The merger of photoredox catalysis with transition metal catalysis, termed metallaphotoredox catalysis, has become a mainstay in synthetic methodology over the past decade. Metallaphotoredox catalysis has combined the unparalleled capacity of transition metal catalysis for bond formation with the broad utility of photoinduced electron- and energy-transfer processes. Photocatalytic substrate activation has allowed the engagement of simple starting materials in metal-mediated bond-forming processes. Moreover, electron or energy transfer directly with key organometallic intermediates has provided novel activation modes entirely complementary to traditional catalytic platforms. This Review details and contextualizes the advancements in molecule construction brought forth by metallaphotocatalysis.
Collapse
Affiliation(s)
- Amy Y Chan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Ian B Perry
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Noah B Bissonnette
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Benito F Buksh
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Grant A Edwards
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Lucas I Frye
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Olivia L Garry
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Marissa N Lavagnino
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Beryl X Li
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Yufan Liang
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Edna Mao
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Agustin Millet
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - James V Oakley
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Nicholas L Reed
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Holt A Sakai
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Ciaran P Seath
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
13
|
Guerrero-Alburquerque N, Zhao S, Rentsch D, Koebel MM, Lattuada M, Malfait WJ. Ureido Functionalization through Amine-Urea Transamidation under Mild Reaction Conditions. Polymers (Basel) 2021; 13:1583. [PMID: 34069157 PMCID: PMC8156039 DOI: 10.3390/polym13101583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 01/24/2023] Open
Abstract
Ureido-functionalized compounds play an indispensable role in important biochemical processes, as well as chemical synthesis and production. Isocyanates, and KOCN in particular, are the preferred reagents for the ureido functionalization of amine-bearing compounds. In this study, we evaluate the potential of urea as a reagent to graft ureido groups onto amines at relatively low temperatures (<100 °C) in aqueous media. Urea is an inexpensive, non-toxic and biocompatible potential alternative to KOCN for ureido functionalization. From as early as 1864, urea was the go-to reagent for polyurea polycondensation, before falling into disuse after the advent of isocyanate chemistry. We systematically re-investigate the advantages and disadvantages of urea for amine transamidation. High ureido-functionalization conversion was obtained for a wide range of substrates, including primary and secondary amines and amino acids. Reaction times are nearly independent of substrate and pH, but excess urea is required for practically feasible reaction rates. Near full conversion of amines into ureido can be achieved within 10 h at 90 °C and within 24 h at 80 °C, and much slower reaction rates were determined at lower temperatures. The importance of the urea/amine ratio and the temperature dependence of the reaction rates indicate that urea decomposition into an isocyanic acid or a carbamate intermediate is the rate-limiting step. The presence of water leads to a modest increase in reaction rates, but the full conversion of amino groups into ureido groups is also possible in the absence of water in neat alcohol, consistent with a reaction mechanism mediated by an isocyanic acid intermediate (where the water assists in the proton transfer). Hence, the reaction with urea avoids the use of toxic isocyanate reagents by in situ generation of the reactive isocyanate intermediate, but the requirement to separate the excess urea from the reaction product remains a major disadvantage.
Collapse
Affiliation(s)
- Natalia Guerrero-Alburquerque
- Laboratory for Building Energy Materials and Components, Swiss Federal Laboratories for Materials Science and Technology, Empa, Überlandstrasse 129, 8600 Dübendorf, Switzerland; (N.G.-A.); (S.Z.); (M.M.K.)
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland;
| | - Shanyu Zhao
- Laboratory for Building Energy Materials and Components, Swiss Federal Laboratories for Materials Science and Technology, Empa, Überlandstrasse 129, 8600 Dübendorf, Switzerland; (N.G.-A.); (S.Z.); (M.M.K.)
| | - Daniel Rentsch
- Laboratory for Functional Polymers, Swiss Federal Laboratories for Materials Science and Technology, Empa, Überlandstrasse 129, 8600 Dübendorf, Switzerland;
| | - Matthias M. Koebel
- Laboratory for Building Energy Materials and Components, Swiss Federal Laboratories for Materials Science and Technology, Empa, Überlandstrasse 129, 8600 Dübendorf, Switzerland; (N.G.-A.); (S.Z.); (M.M.K.)
| | - Marco Lattuada
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland;
| | - Wim J. Malfait
- Laboratory for Building Energy Materials and Components, Swiss Federal Laboratories for Materials Science and Technology, Empa, Überlandstrasse 129, 8600 Dübendorf, Switzerland; (N.G.-A.); (S.Z.); (M.M.K.)
| |
Collapse
|
14
|
Babu SS, Muthuraja P, Yadav P, Gopinath P. Aryldiazonium Salts in Photoredox Catalysis – Recent Trends. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100136] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sakamuri Sarath Babu
- Department of Chemistry Indian Institute of Science Education and Research Tirupati Tirupati, A.P. India
| | - P. Muthuraja
- Department of Chemistry Indian Institute of Science Education and Research Tirupati Tirupati, A.P. India
| | - Pooja Yadav
- Department of Chemistry Indian Institute of Science Education and Research Tirupati Tirupati, A.P. India
| | - Purushothaman Gopinath
- Department of Chemistry Indian Institute of Science Education and Research Tirupati Tirupati, A.P. India
| |
Collapse
|
15
|
Zhang X, Mei Y, Li Y, Hu J, Huang D, Bi Y. Visible‐Light‐Mediated Functionalization of Aryl Diazonium Salts. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202000636] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xin Zhang
- Department of Chemistry Lishui University No. 1, Xueyuan Road Lishui City 323000 Zhejiang Province P. R. China
| | - Yaoyao Mei
- Department of Chemistry Lishui University No. 1, Xueyuan Road Lishui City 323000 Zhejiang Province P. R. China
| | - Yangyang Li
- Department of Chemistry Lishui University No. 1, Xueyuan Road Lishui City 323000 Zhejiang Province P. R. China
| | - Jingang Hu
- Department of Chemistry Lishui University No. 1, Xueyuan Road Lishui City 323000 Zhejiang Province P. R. China
| | - Dayun Huang
- Department of Chemistry Lishui University No. 1, Xueyuan Road Lishui City 323000 Zhejiang Province P. R. China
| | - Yicheng Bi
- Qingdao University of Science & Technology
| |
Collapse
|
16
|
Shee M, Singh NDP. Cooperative photoredox and palladium catalysis: recent advances in various functionalization reactions. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02071k] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cooperative photoredox and palladium catalysis for various functionalization reactions.
Collapse
Affiliation(s)
- Maniklal Shee
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur
- India
| | - N. D. Pradeep Singh
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur
- India
| |
Collapse
|