1
|
Jana S, De P, Dey C, Dey SG, Dey A, Gupta SS. Highly regioselective oxidation of C-H bonds in water using hydrogen peroxide by a cytochrome P450 mimicking iron complex. Chem Sci 2023; 14:10515-10523. [PMID: 37799989 PMCID: PMC10548533 DOI: 10.1039/d3sc03495j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/28/2023] [Indexed: 10/07/2023] Open
Abstract
Cytochrome P450, one of nature's oxidative workhorses, catalyzes the oxidation of C-H bonds in complex biological settings. Extensive research has been conducted over the past five decades to develop a fully functional mimic that activates O2 or H2O2 in water to oxidize strong C-H bonds. We report the first example of a synthetic iron complex that functionally mimics cytochrome P450 in 100% water using H2O2 as the oxidant. This iron complex, in which one methyl group is replaced with a phenyl group in either wing of the macrocycle, oxidized unactivated C-H bonds in small organic molecules with very high selectivity in water (pH 8.5). Several substrates (34 examples) that contained arenes, heteroaromatics, and polar functional groups were oxidized with predictable selectivity and stereoretention with moderate to high yields (50-90%), low catalyst loadings (1-4 mol%) and a small excess of H2O2 (2-3 equiv.) in water. Mechanistic studies indicated the oxoiron(v) to be the active intermediate in water and displayed unprecedented selectivity towards 3° C-H bonds. Under single-turnover conditions, the reactivity of this oxoiron(v) intermediate in water was found to be around 300 fold higher than that in CH3CN, thus implying the role water plays in enzymatic systems.
Collapse
Affiliation(s)
- Sandipan Jana
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohanpur 741246 Kolkata India
| | - Puja De
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohanpur 741246 Kolkata India
| | - Chinmay Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science Kolkata West Bengal 700032 India
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science Kolkata West Bengal 700032 India
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science Kolkata West Bengal 700032 India
| | - Sayam Sen Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohanpur 741246 Kolkata India
| |
Collapse
|
2
|
Zhu W, Sharma N, Lee YM, El-Khouly ME, Fukuzumi S, Nam W. Use of Singlet Oxygen in the Generation of a Mononuclear Nonheme Iron(IV)-Oxo Complex. Inorg Chem 2023; 62:4116-4123. [PMID: 36862977 DOI: 10.1021/acs.inorgchem.2c04020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Nonheme iron(III)-superoxo intermediates are generated in the activation of dioxygen (O2) by nonheme iron(II) complexes and then converted to iron(IV)-oxo species by reacting with hydrogen donor substrates with relatively weak C-H bonds. If singlet oxygen (1O2) with ca. 1 eV higher energy than the ground state triplet oxygen (3O2) is employed, iron(IV)-oxo complexes can be synthesized using hydrogen donor substrates with much stronger C-H bonds. However, 1O2 has never been used in generating iron(IV)-oxo complexes. Herein, we report that a nonheme iron(IV)-oxo species, [FeIV(O)(TMC)]2+ (TMC = tetramethylcyclam), is generated using 1O2, which is produced with boron subphthalocyanine chloride (SubPc) as a photosensitizer, and hydrogen donor substrates with relatively strong C-H bonds, such as toluene (BDE = 89.5 kcal mol-1), via electron transfer from [FeII(TMC)]2+ to 1O2, which is energetically more favorable by 0.98 eV, as compared with electron transfer from [FeII(TMC)]2+ to 3O2. Electron transfer from [FeII(TMC)]2+ to 1O2 produces an iron(III)-superoxo complex, [FeIII(O2)(TMC)]2+, followed by abstracting a hydrogen atom from toluene by [FeIII(O2)(TMC)]2+ to form an iron(III)-hydroperoxo complex, [FeIII(OOH)(TMC)]2+, that is further converted to the [FeIV(O)(TMC)]2+ species. Thus, the present study reports the first example of generating a mononuclear nonheme iron(IV)-oxo complex with the use of singlet oxygen, instead of triplet oxygen, and a hydrogen atom donor with relatively strong C-H bonds. Detailed mechanistic aspects, such as the detection of 1O2 emission, the quenching by [FeII(TMC)]2+, and the quantum yields, have also been discussed to provide valuable mechanistic insights into understanding nonheme iron-oxo chemistry.
Collapse
Affiliation(s)
- Wenjuan Zhu
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Namita Sharma
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Mohamed E El-Khouly
- Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, New Borg El-Arab 21934, Alexandria, Egypt
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
3
|
Shen HM, Ye HL, Ni JY, Wang KK, Zhou XY, She YB. Oxidation of α-C-H bonds in alkyl aromatics with O2 catalyzed by highly dispersed cobalt(II) coordinated in confined reaction channel of porphyrin-based POFs with simultaneously enhanced conversion and selectivity. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
4
|
Xie P, Xue C, Shi S, Du D. Visible-Light-Driven Selective Air-Oxygenation of C-H Bond via CeCl 3 Catalysis in Water. CHEMSUSCHEM 2021; 14:2689-2693. [PMID: 33877736 DOI: 10.1002/cssc.202100682] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Visible-light-induced C-H aerobic oxidation is an important chemical transformation that can be applied for the synthesis of aromatic ketones. High-cost catalysts and toxic solvents were generally needed in the present methodologies. Here, an efficient aqueous C-H aerobic oxidation protocol was reported. Through CeCl3 -mediated photocatalysis, a series of aromatic ketones were produced in moderate to excellent yields. With air as the oxidant, this reaction could be performed under mild conditions in water and demonstrated high activity and functional group tolerance. This method is economical, highly efficient, and environmentally friendly, and it will provide inspiration for the development of aqueous photochemical synthesis reactions.
Collapse
Affiliation(s)
- Pan Xie
- College of Chemistry and Chemistry Engineering, Shaanxi Key Laboratory of Chemistry Additives for Industry, Shaanxi University of Science & Technology, Xi'an, 710021 (P. R., China
| | - Cheng Xue
- College of Chemistry and Chemistry Engineering, Shaanxi Key Laboratory of Chemistry Additives for Industry, Shaanxi University of Science & Technology, Xi'an, 710021 (P. R., China
| | - Sanshan Shi
- College of Chemistry and Chemistry Engineering, Shaanxi Key Laboratory of Chemistry Additives for Industry, Shaanxi University of Science & Technology, Xi'an, 710021 (P. R., China
| | - Dongdong Du
- College of Chemistry and Chemistry Engineering, Shaanxi Key Laboratory of Chemistry Additives for Industry, Shaanxi University of Science & Technology, Xi'an, 710021 (P. R., China
| |
Collapse
|
5
|
Sasmal HS, Bag S, Chandra B, Majumder P, Kuiry H, Karak S, Sen Gupta S, Banerjee R. Heterogeneous C-H Functionalization in Water via Porous Covalent Organic Framework Nanofilms: A Case of Catalytic Sphere Transmutation. J Am Chem Soc 2021; 143:8426-8436. [PMID: 34029465 DOI: 10.1021/jacs.1c02425] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heterogeneous catalysis in water has not been explored beyond certain advantages such as recyclability and recovery of the catalysts from the reaction medium. Moreover, poor yield, extremely low selectivity, and active catalytic site deactivation further underrate the heterogeneous catalysis in water. Considering these facts, we have designed and synthesized solution-dispersible porous covalent organic framework (COF) nanospheres. We have used their distinctive morphology and dispersibility to functionalize unactivated C-H bonds of alkanes heterogeneously with high catalytic yield (42-99%) and enhanced regio- and stereoselectivity (3°:2° = 105:1 for adamantane). Further, the fabrication of catalyst-immobilized COF nanofilms via covalent self-assembly of catalytic COF nanospheres for the first time has become the key toward converting the catalytically inactive homogeneous catalysts into active and effective heterogeneous catalysts operating in water. This unique covalent self-assembly occurs through the protrusion of the fibers at the interface of two nanospheres, transmuting the catalytic spheres into films without any leaching of catalyst molecules. The catalyst-immobilized porous COF nanofilms' chemical functionality and hydrophobic environment stabilize the high-valent transient active oxoiron(V) intermediate in water and restricts the active catalytic site's deactivation. These COF nanofilms functionalize the unactivated C-H bonds in water with a high catalytic yield (45-99%) and with a high degree of selectivity (cis:trans = 155:1; 3°:2° = 257:1, for cis-1,2-dimethylcyclohexane). To establish this approach's "practical implementation", we conducted the catalysis inflow (TON = 424 ± 5) using catalyst-immobilized COF nanofilms fabricated on a macroporous polymeric support.
Collapse
Affiliation(s)
- Himadri Sekhar Sasmal
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India.,Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Saikat Bag
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India.,Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Bittu Chandra
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Poulami Majumder
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India.,Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Himangshu Kuiry
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Suvendu Karak
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Sayam Sen Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India.,Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Rahul Banerjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India.,Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| |
Collapse
|
6
|
Lu X, Lee YM, Sankaralingam M, Fukuzumi S, Nam W. Catalytic Four-Electron Reduction of Dioxygen by Ferrocene Derivatives with a Nonheme Iron(III) TAML Complex. Inorg Chem 2020; 59:18010-18017. [PMID: 33300784 DOI: 10.1021/acs.inorgchem.0c02400] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A mononuclear nonheme iron(III) complex with a tetraamido macrocyclic ligand (TAML), [(TAML)FeIII]- (1), is a selective precatalyst for four-electron reduction of dioxygen by ferrocene derivatives in the presence of acetic acid (CH3COOH) in acetone. This is the first work to show that a nonheme iron(III) complex catalyzes the four-electron reduction of O2 by one-electron reductants. An iron(V)-oxo complex, [(TAML)FeV(O)]- (2), was produced by oxygenation of 1 with O2 via the formation of triacetone triperoxide (TATP), acting as an autocatalyst that shortened the induction time for the generation of 2. Decamethylferrocene (Me10Fc) and octamethylferrocene (Me8Fc) reduced 2 to 1 by two electrons in the presence of CH3COOH to produce decamethylferrocenium cation (Me10Fc+) and octamethylferrocenium cation (Me8Fc+), respectively. Then, 1 was oxygenated by O2 to regenerate 2 via the formation of TATP. In the cases of ferrocene (Fc), bromoferrocene (BrFc) and 1,1'-dibromoferrocene (Br2Fc), initial electron transfer from ferrocene derivatives to 2 occurred; however, neither a second proton-coupled electron transfer from ferrocene derivatives to 2 nor a catalytic four-electron reduction of O2 occurred.
Collapse
Affiliation(s)
- Xiaoyan Lu
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | | | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.,Faculty of Science and Engineering, Meijo University, Nagoya, Aichi 468-8502, Japan
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
7
|
Chandra B, K M H, Pattanayak S, Gupta SS. Oxoiron(v) mediated selective electrochemical oxygenation of unactivated C-H and C[double bond, length as m-dash]C bonds using water as the oxygen source. Chem Sci 2020; 11:11877-11885. [PMID: 34094416 PMCID: PMC8162932 DOI: 10.1039/d0sc03616a] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
An efficient electrochemical method for the selective oxidation of C–H bonds of unactivated alkanes (BDE ≤97 kcal mol−1) and CC bonds of alkenes using a biomimetic iron complex, [(bTAML)FeIII-OH2]−, as the redox mediator in an undivided electrochemical cell with inexpensive carbon and nickel electrodes is reported. The O-atom of water remains the source of O-incorporation in the product formed after oxidation. The products formed upon oxidation of C–H bonds display very high regioselectivity (75 : 1, 3° : 2° for adamantane) and stereo-retention (RC ∼99% for cyclohexane derivatives). The substrate scope includes natural products such as cedryl acetate and ambroxide. For alkenes, epoxides were obtained as the sole product. Mechanistic studies show the involvement of a high-valent oxoiron(v) species, [(bTAML)FeV(O)]− formed via PCET (overall 2H+/2e−) from [(bTAML)FeIII-OH2]− in CPE at 0.80 V (vs. Ag/AgNO3). Moreover, electrokinetic studies for the oxidation of C–H bonds indicate a second-order reaction with the C–H abstraction by oxoiron(v) being the rate-determining step. A biomimetic iron complex-mediated selective and efficient electrochemical oxygenation of unactivated C–H bonds and CC bonds using water as an O-atom source.![]()
Collapse
Affiliation(s)
- Bittu Chandra
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur West Bengal India-741246
| | - Hellan K M
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur West Bengal India-741246
| | - Santanu Pattanayak
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur West Bengal India-741246
| | - Sayam Sen Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur West Bengal India-741246
| |
Collapse
|