1
|
Zhou JE, Reddy RCK, Zhong A, Li Y, Huang Q, Lin X, Qian J, Yang C, Manke I, Chen R. Metal-Organic Framework-Based Materials for Advanced Sodium Storage: Development and Anticipation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312471. [PMID: 38193792 DOI: 10.1002/adma.202312471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/16/2023] [Indexed: 01/10/2024]
Abstract
As a pioneering battery technology, even though sodium-ion batteries (SIBs) are safe, non-flammable, and capable of exhibiting better temperature endurance performance than lithium-ion batteries (LIBs), because of lower energy density and larger ionic size, they are not amicable for large-scale applications. Generally, the electrochemical storage performance of a secondary battery can be improved by monitoring the composition and morphology of electrode materials. Because more is the intricacy of a nanostructured composite electrode material, more electrochemical storage applications would be expected. Despite the conventional methods suitable for practical production, the synthesis of metal-organic frameworks (MOFs) would offer enormous opportunities for next-generation battery applications by delicately systematizing the structure and composition at the molecular level to store sodium ions with larger sizes compared with lithium ions. Here, the review comprehensively discusses the progress of nanostructured MOFs and their derivatives applied as negative and positive electrode materials for effective sodium storage in SIBs. The commercialization goal has prompted the development of MOFs and their derivatives as electrode materials, before which the synthesis and mechanism for MOF-based SIB electrodes with improved sodium storage performance are systematically discussed. Finally, the existing challenges, possible perspectives, and future opportunities will be anticipated.
Collapse
Affiliation(s)
- Jian-En Zhou
- Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - R Chenna Krishna Reddy
- Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Ao Zhong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yilin Li
- Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Qianhong Huang
- Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Xiaoming Lin
- Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Ji Qian
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Chao Yang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Ingo Manke
- Helmholtz Centre Berlin for Materials and Energy, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
| | - Renjie Chen
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
2
|
Zheng H, Xu HS, Hu J, Liu H, Wei L, Wu S, Li J, Huang Y, Tang K. Electrochemical performance of CoSe 2 with mixed phases decorated with N-doped rGO in potassium-ion batteries. RSC Adv 2022; 12:21374-21384. [PMID: 35975082 PMCID: PMC9344900 DOI: 10.1039/d2ra03608h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022] Open
Abstract
Potassium-ion batteries (PIBs) have received much attention as next-generation energy storage systems because of their abundance, low cost, and slightly lower standard redox potential than lithium-ion batteries (LIBs). Nevertheless, they still face great challenges in the design of the best electrode materials for applications. Herein, we have successfully synthesized nano-sized CoSe2 encapsulated by N-doped reduced graphene oxide (denoted as CoSe2@N-rGO) by a direct one-step hydrothermal method, including both orthorhombic and cubic CoSe2 phases. The CoSe2@N-rGO anodes exhibit a high reversible capacity of 599.3 mA h g−1 at 0.05 A g−1 in the initial cycle, and in particular, they also exhibit a cycling stability of 421 mA h g−1 after 100 cycles at 0.2 A g−1. Density functional theory (DFT) calculations show that CoSe2 with N-doped carbon can greatly accelerate electron transfer and enhance the rate performance. In addition, the intrinsic causes of the higher electrochemical performance of orthorhombic CoSe2 than that of cubic CoSe2 are also discussed. Potassium-ion batteries (PIBs) have received much attention as next-generation energy storage systems because of their abundance, low cost, and slightly lower standard redox potential than lithium-ion batteries (LIBs).![]()
Collapse
Affiliation(s)
- Hui Zheng
- Department of Chemistry, University of Science and Technology of China Hefei 230026 People's Republic of China
| | - Han-Shu Xu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China Hefei 230026 People's Republic of China .,Department of Chemistry, University of Science and Technology of China Hefei 230026 People's Republic of China
| | - Jiaping Hu
- Department of Chemistry, University of Science and Technology of China Hefei 230026 People's Republic of China
| | - Huimin Liu
- Department of Chemistry, University of Science and Technology of China Hefei 230026 People's Republic of China
| | - Lianwei Wei
- Department of Chemistry, University of Science and Technology of China Hefei 230026 People's Republic of China
| | - Shusheng Wu
- Department of Chemistry, University of Science and Technology of China Hefei 230026 People's Republic of China
| | - Jin Li
- Department of Chemistry, University of Science and Technology of China Hefei 230026 People's Republic of China
| | - Yuhu Huang
- Department of Chemistry, University of Science and Technology of China Hefei 230026 People's Republic of China
| | - Kaibin Tang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China Hefei 230026 People's Republic of China .,Department of Chemistry, University of Science and Technology of China Hefei 230026 People's Republic of China
| |
Collapse
|
3
|
Xiao Y, Miao Y, Wan S, Sun YK, Chen S. Synergistic Engineering of Se Vacancies and Heterointerfaces in Zinc-Cobalt Selenide Anode for Highly Efficient Na-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202582. [PMID: 35708216 DOI: 10.1002/smll.202202582] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/27/2022] [Indexed: 06/15/2023]
Abstract
The exploitation of effective strategies to accelerate the Na+ diffusion kinetics and improve the structural stability in the electrode is extremely important for the development of high efficientcy sodium-ion batteries. Herein, Se vacancies and heterostructure engineering are utilized to improve the Na+ -storage performance of transition metal selenides anode prepared through a facile two-in-one route. The experimental results coupled with theoretical calculations reveal that the successful construction of the Se vacancies and heterostructure interfaces can effectively lower the Na+ diffusion barrier, accelerate the charge transfer efficiency, improve Na+ adsorption ability, and provide an abundance of active sites. Consequently, the batteries based on the constructed ZnSe/CoSe2 -CN anode manifest a high initial Coulombic efficiency (97.7%), remarkable specific capacities (547.1 mAh g-1 at 0.5 A g-1 ), superb rate capability (362.1 mAh g-1 at 20 A g-1 ), as well as ultrastable long-term stability (1000 cycles) with a satisfied specific capacity (535.6 mAh g-1 ) at 1 A g-1 . This work facilitates an in-depth understanding of the synergistic effect of vacancies and heterojunctions in improving the Na+ reaction kinetics, providing an effective strategy to the rational design of key materials for high efficiency rechargeable batteries.
Collapse
Affiliation(s)
- Ying Xiao
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yue Miao
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shuang Wan
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yang-Kook Sun
- Department of Energy Engineering, Hanyang University, Seoul, 133-791, Republic of Korea
| | - Shimou Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
4
|
Lee JS, Saroha R, Cho JS. Porous Microspheres Comprising CoSe 2 Nanorods Coated with N-Doped Graphitic C and Polydopamine-Derived C as Anodes for Long-Lived Na-Ion Batteries. NANO-MICRO LETTERS 2022; 14:113. [PMID: 35482108 PMCID: PMC9050979 DOI: 10.1007/s40820-022-00855-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/23/2022] [Indexed: 05/23/2023]
Abstract
Metal-organic framework-templated nitrogen-doped graphitic carbon (NGC) and polydopamine-derived carbon (PDA-derived C)-double coated one-dimensional CoSe2 nanorods supported highly porous three-dimensional microspheres are introduced as anodes for excellent Na-ion batteries, particularly with long-lived cycle under carbonate-based electrolyte system. The microspheres uniformly composed of ZIF-67 polyhedrons and polystyrene nanobeads (ϕ = 40 nm) are synthesized using the facile spray pyrolysis technique, followed by the selenization process (P-CoSe2@NGC NR). Further, the PDA-derived C-coated microspheres are obtained using a solution-based coating approach and the subsequent carbonization process (P-CoSe2@PDA-C NR). The rational synthesis approach benefited from the synergistic effects of dual carbon coating, resulting in a highly conductive and porous nanostructure that could facilitate rapid diffusion of charge species along with efficient electrolyte infiltration and effectively channelize the volume stress. Consequently, the prepared nanostructure exhibits extraordinary electrochemical performance, particularly the ultra-long cycle life stability. For instance, the advanced anode has a discharge capacity of 291 (1000th cycle, average capacity decay of 0.017%) and 142 mAh g-1 (5000th cycle, average capacity decay of 0.011%) at a current density of 0.5 and 2.0 A g-1, respectively.
Collapse
Affiliation(s)
- Jae Seob Lee
- Department of Engineering Chemistry, Chungbuk National University, Cheongju, Chungbuk, 361-763, Republic of Korea
| | - Rakesh Saroha
- Department of Engineering Chemistry, Chungbuk National University, Cheongju, Chungbuk, 361-763, Republic of Korea
| | - Jung Sang Cho
- Department of Engineering Chemistry, Chungbuk National University, Cheongju, Chungbuk, 361-763, Republic of Korea.
| |
Collapse
|
5
|
Huang WH, Chen Z, Wang HY, Wang L, Zhang HB, Wang H. Sponge-like hierarchical porous carbon decorated by Fe atoms for high-efficiency sodium storage and diffusion. Chem Commun (Camb) 2022; 58:4496-4499. [PMID: 35302120 DOI: 10.1039/d1cc07305b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hierarchical pores with accessible active sites in carbon are highly desired for enhancing sodium storage in sodium ion batteries (SIBs). However, it is still challenging to construct such materials with tunable architectures. Herein, a sponge-like 3D hierarchical porous Fe-doped carbon (Fe@NCS) was successfully assembled from an energetic framework. The continuous distribution of micro/meso/macro-pores in the range of 5 nm-2 μm and homogenously decorated Fe atoms were achieved, which greatly enhanced the storage and diffusion of Na+ ions and displayed brilliant high-rate capability and cycling stability.
Collapse
Affiliation(s)
- Wen-Huan Huang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Zhuo Chen
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Hao-Yang Wang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Lei Wang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Hua-Bin Zhang
- KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Hong Wang
- Department of Chemical Engineering, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiaotong University, Shanghai, 200240, China
| |
Collapse
|
6
|
Li K, Zheng K, Zhang Z, Li K, Bian Z, Xiao Q, Zhao K, Li H, Cao H, Fang Z, Zhu Y. Three-dimensional graphene encapsulated hollow CoSe 2-SnSe 2nanoboxes for high performance asymmetric supercapacitors. NANOTECHNOLOGY 2022; 33:165602. [PMID: 34986468 DOI: 10.1088/1361-6528/ac487a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Construction of metal selenides with a large specific surface area and a hollow structure is one of the effective methods to improve the electrochemical performance of supercapacitors. However, the nano-material easily agglomerates due to the lack of support, resulting in the loss of electrochemical performance. Herein, we successfully design a three-dimensional graphene (3DG) encapsulation-protected hollow nanoboxes (CoSe2-SnSe2) composite aerogel (3DG/CoSe2-SnSe2) via a co-precipitation method coupled with self-assembly route, followed by a high temperature selenidation strategy. The obtained aerogel possesses porous 3DG conductive network, large specific surface area and plenty of reactive active sites. It could be used as a flexible and binder-free electrode after a facile mechanical compression process, which provided a high specific capacitance of 460 F g-1at 0.5 A g-1, good rate capability of 212.7 F g-1at 10 A g-1The capacitance retention rate is 80% at 2 A g-1after 5000 cycles due to the fast electron/ion transfer and electrolyte diffusion. With the as-prepared 3DG/CoSe2-SnSe2as positive electrodes and the AC (activated carbon) as negative electrodes, an asymmetric supercapacitor (3DG/CoSe2-SnSe2//AC) was fabricated, which delivered a high specific capacity of 38 F g-1at 1 A g-1and an energy density of 11.89 Wh kg-1at 749.9 W kg-1, as well as excellent cycle stability. This work provides a new method for preparing electrode material.
Collapse
Affiliation(s)
- Kainan Li
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China
| | - Ke Zheng
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, People's Republic of China
| | - Zhifang Zhang
- Department of Physics, Fudan University, Shanghai 200433, People's Republic of China
| | - Kuan Li
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China
| | - Ziyao Bian
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China
| | - Qian Xiao
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China
| | - Kuangjian Zhao
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China
| | - Huiyu Li
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China
| | - Haijing Cao
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China
| | - Zebo Fang
- Department of Physics, Shaoxing University, Shaoxing 312000, People's Republic of China
| | - Yanyan Zhu
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China
| |
Collapse
|
7
|
Chen Q, Liang Q, He SA, Cui Z, Liu Q, Zhu J, Zou R. Co 0.85Se particles encapsulated in the inner wall of nitrogen-doped carbon matrix nanotubes with rational interfacial bonds for high-performance lithium-ion batteries. Dalton Trans 2021; 50:11458-11465. [PMID: 34346462 DOI: 10.1039/d1dt01899j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cobalt selenides based on the conversion reaction have been widely applied in lithium-ion batteries (LIBs) due to their high conductivity and high specific capacity. However, effectively suppressing the fast capacity fade caused by the irreversible Se/Co dissolution and serious volume change during the cycling process is still a challenge. Herein, a facile and efficient self-generated sacrificial template method is used to prepare Co0.85Se nanoparticles encapsulated in the inner wall of N-doped carbon matrix nanotubes (Co0.85Se@NCMT). In this strategy, the formation of stable Co-N/C and Se-C as well as enhancing the mechanical strength between active materials and N-doped carbon matrix nanotubes can critically affect the performance through suppressing the dissolution of Se/Co, decreasing energy band, promoting the shuttling of the ions/e- moving and mitigating the volume expansion during the charge-discharge process, which play a key role in improving the structure stability and electrochemical performance. Besides, Co0.85Se nanoparticles encapsulated in the robust carbon matrix inner wall can ensure good electron transfer and prevent the aggregation of nanoparticles, leading to superior electrochemical reversibility. Finally, carbon matrix nanotubes can provide sufficient space to effectively accommodate the volume changes of encapsulated Co0.85Se nanoparticles, thereby improving the cyclic stability. Based on the above advantages, as expected, the electrochemical investigations exhibited that the Co0.85Se@NCMT anode performs a stable reversible capacity of 462.9 mA h g-1 at a large current density of 5 A g-1 and a remarkable capacity retention of 99.5% after 800 cycles, suggesting its promising potential for the anode of LIBs.
Collapse
Affiliation(s)
- Qi Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | | | | | | | | | | | | |
Collapse
|
8
|
Wang L, Jiang Q, Yang K, Sun Y, Zhou T, Huang Z, Yang HJ, Hu J. Self-assembly of carbon nanotubes on a hollow carbon polyhedron to enhance the potassium storage cycling stability of metal organic framework-derived metallic selenide anodes. J Colloid Interface Sci 2021; 601:60-69. [PMID: 34058552 DOI: 10.1016/j.jcis.2021.05.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/26/2022]
Abstract
Potassium-ion batteries (PIBs) is increasingly studied because of their suitable redox potential and high natural abundance. However, potential anode materials with long-term cycling stability are still in high demand because of the large radius of K+. Herein, an MOF-derived hierarchical carbon structure and the self-assembly of CNTs on hollow carbon polyhedrons are used as carbon matrices to disperse and stabilize metal selenides(Co-Se@CNNCP). When the hybrid is utilized in PIBs, it displays a specific capacity of 410 mA h g-1 at 0.1 A g-1 after 80 cycles and 253 mA h g-1 at 0.5 A g-1 after 200 cycles with a capacity retention of 100%, while the metal selenides dispersed on hollow carbon polyhedrons without CNTs (Zn-Co-Se@NCP) lose 86% of their capacity after 200 cycles. The superior cycling stability of the hybrid is mainly attributed to the large amounts of CNTs suppressing the agglomeration of the metal selenide nanoparticles on the surface, and the hollow carbon polyhedrons cause a high structural integrity during the repreated K+ insertion and extraction process. This work offers a feasible route to design a hierarchical carbon matrix for use as the anode materials of PIBs with long-term cycling stability.
Collapse
Affiliation(s)
- Lin Wang
- School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Qingqing Jiang
- School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China.
| | - Kun Yang
- School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Yifan Sun
- School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Tengfei Zhou
- Institute for Superconducting & Electronic Materials, University of Wollongong, Wollongong, New South Wales 2500, Australia
| | - Zhengxi Huang
- School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Hai-Jian Yang
- School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Juncheng Hu
- School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| |
Collapse
|