1
|
Hu Y, Willner I. Oligo-Adenine Derived Secondary Nucleic Acid Frameworks: From Structural Characteristics to Applications. Angew Chem Int Ed Engl 2024; 63:e202412106. [PMID: 39183707 DOI: 10.1002/anie.202412106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Oligo-adenine (polyA) is primarily known for its critical role in mRNA stability, translational status, and gene regulation. Beyond its biological functions, extensive research has unveiled the diverse applications of polyA. In response to environmental stimuli, single polyA strands undergo distinctive structural transitions into diverse secondary configurations, which are reversible upon the introduction of appropriate counter-triggers. In this review, we systematically summarize recent advances of noncanonical structures derived from polyA, including A-motif duplex, A-cyanuric acid triplex, A-coralyne-A duplex, and T ⋅ A-T triplex. The structural characteristics and mechanisms underlying these conformations under specific external stimuli are addressed, followed by examples of their applications in stimuli-responsive DNA hydrogels, supramolecular fibre assembly, molecular electronics and switches, biosensing and bioengineering, payloads encapsulation and release, and others. A detailed comparison of these polyA-derived noncanonical structures is provided, highlighting their distinctive features. Furthermore, by integrating their stimuli-responsiveness and conformational characteristics, advanced material development, such as pH-cascaded DNA hydrogels and supramolecular fibres exhibiting dynamic structural transitions adapting environmental cues, are introduced. An outlook for future developments is also discussed. These polyA derived, stimuli-responsive, noncanonical structures enrich the arsenal of DNA "toolbox", offering dynamic DNA frameworks for diverse future applications.
Collapse
Affiliation(s)
- Yuwei Hu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore, Republic of Singapore
| | - Itamar Willner
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| |
Collapse
|
2
|
Zhuang L, Gong J, Zhang P, Zhang D, Zhao Y, Yang J, Liu G, Zhang Y, Shen Q. Research progress of loop-mediated isothermal amplification in the detection of Salmonella for food safety applications. DISCOVER NANO 2024; 19:124. [PMID: 39105889 PMCID: PMC11303641 DOI: 10.1186/s11671-024-04075-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
Salmonella, the prevailing zoonotic pathogen within the Enterobacteriaceae family, holds the foremost position in global bacterial poisoning incidents, thereby signifying its paramount importance in public health. Consequently, the imperative for expeditious and uncomplicated detection techniques for Salmonella in food is underscored. After more than two decades of development, loop-mediated isothermal amplification (LAMP) has emerged as a potent adjunct to the polymerase chain reaction, demonstrating significant advantages in the realm of isothermal amplification. Its growing prominence is evident in the increasing number of reports on its application in the rapid detection of Salmonella. This paper provides a systematic exposition of the technical principles and characteristics of LAMP, along with an overview of the research progress made in the rapid detection of Salmonella using LAMP and its derivatives. Additionally, the target genes reported in various levels, including Salmonella genus, species, serogroup, and serotype, are summarized, aiming to offer a valuable reference for the advancement of LAMP application in Salmonella detection. Finally, we look forward to the development direction of LAMP and expect more competitive methods to provide strong support for food safety applications.
Collapse
Affiliation(s)
- Linlin Zhuang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering and Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China
| | - Jiansen Gong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, People's Republic of China
| | - Ping Zhang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, People's Republic of China
| | - Di Zhang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, People's Republic of China
| | - Ying Zhao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering and Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China
| | - Jianbo Yang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Guofang Liu
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Yu Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering and Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China.
| | - Qiuping Shen
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China.
| |
Collapse
|
3
|
Sapre A, Bhattacharyya R, Sen A. A Cautionary Perspective on Hydrogel-Induced Concentration Gradient Generation for Studying Chemotaxis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:40131-40138. [PMID: 39021097 DOI: 10.1021/acsami.4c04930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The achievement of consistent and static chemical gradients is critically important in the study of diffusion and chemotaxis at the micro- and nanoscales. In this context, a number of groups have reported on hydrogel-based systems for generating concentration gradients. Here, we analyze the behavior of agarose and gelatin-based hydrogels in hybridization chambers of different heights. Our focus is on the issues that are caused by the presence of robust bulk fluid flows in such systems due to the solutes present in the hydrogel and/or the surrounding fluid. We describe the key insights derived from these experiments, offering practical guidelines for establishing gradients using hydrogel-based systems and make the community aware of different variables that can make the experiments nonreproducible and prone to misinterpretations.
Collapse
Affiliation(s)
- Aditya Sapre
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Rik Bhattacharyya
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ayusman Sen
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
4
|
Hu Y, Liu J, Ke Y, Wang B, Lim JYC, Dong Z, Long Y, Willner I. Oligo-Adenine and Cyanuric Acid Supramolecular DNA-Based Hydrogels Exhibiting Acid-Resistance and Physiological pH-Responsiveness. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29235-29247. [PMID: 38769743 DOI: 10.1021/acsami.4c03834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Expanding the functions and applications of DNA by integrating noncanonical bases and structures into biopolymers is a continuous scientific effort. An adenine-rich strand (A-strand) is introduced as functional scaffold revealing, in the presence of the low-molecular-weight cofactor cyanuric acid (CA, pKa 6.9), supramolecular hydrogel-forming efficacies demonstrating multiple pH-responsiveness. At pH 1.2, the A-strand transforms into a parallel A-motif duplex hydrogel cross-linked by AH+-H+A units due to the protonation of adenine (pKa 3.5). At pH 5.2, and in the presence of coadded CA, a helicene-like configuration is formed between adenine and protonated CA, generating a parallel A-CA triplex cross-linked hydrogel. At pH 8.0, the hydrogel undergoes transition into a liquid state by deprotonation of CA cofactor units and disassembly of A-CA triplex into its constituent components. Density functional theory calculations and molecular dynamics simulations, supporting the structural reconfigurations of A-strand in the presence of CA, are performed. The sequential pH-stimulated hydrogel states are rheometrically characterized. The hydrogel framework is loaded with fluorescein-labeled insulin, and the pH-stimulated release of insulin from the hydrogel across the pH barriers present in the gastrointestinal tract is demonstrated. The results provide principles for future application of the hydrogel for oral insulin administration for diabetes.
Collapse
Affiliation(s)
- Yuwei Hu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Jia Liu
- State Key Laboratory Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Yujie Ke
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Binju Wang
- State Key Laboratory Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jason Y C Lim
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Zhaogang Dong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Yi Long
- Electronic Engineering Department, The Chinese University of Hong Kong, Hong Kong 999077, P. R. China
| | - Itamar Willner
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
5
|
Cheng Y, Zhang H, Wei H, Yu CY. Injectable hydrogels as emerging drug-delivery platforms for tumor therapy. Biomater Sci 2024; 12:1151-1170. [PMID: 38319379 DOI: 10.1039/d3bm01840g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Tumor therapy continues to be a prominent field within biomedical research. The development of various drug carriers has been propelled by concerns surrounding the side effects and targeting efficacy of various chemotherapeutic drugs and other therapeutic agents. These carriers strive to enhance drug concentration at tumor sites, minimize systemic side effects, and improve therapeutic outcomes. Among the reported delivery systems, injectable hydrogels have emerged as an emerging candidate for the in vivo delivery of chemotherapeutic drugs due to their minimal invasive drug delivery properties. This review systematically summarizes the composition and preparation methodologies of injectable hydrogels and further highlights the delivery mechanisms of diverse drugs using these hydrogels for tumor therapy, along with an in-depth discussion on the optimized therapeutic efficiency of drugs encapsulated within the hydrogels. The work concludes by providing a dynamic forward-looking perspective on the potential challenges and possible solutions of the in situ injectable hydrogels for non-surgical and real-time diagnostic applications.
Collapse
Affiliation(s)
- Yao Cheng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, China.
| | - Haitao Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, China.
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, China.
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, China.
| |
Collapse
|
6
|
Song X, Li X, Tan Z, Zhang L. Recent status and trends of nanotechnology in cervical cancer: a systematic review and bibliometric analysis. Front Oncol 2024; 14:1327851. [PMID: 38444688 PMCID: PMC10912161 DOI: 10.3389/fonc.2024.1327851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/31/2024] [Indexed: 03/07/2024] Open
Abstract
Background Cervical cancer is currently the second leading cause of cancer death among women from developing countries (1). However, there is a lack of effective treatment methods, and the existing treatments often result in significant adverse reactions and high chances of recurrence, which ultimately impact the prognosis of patients. As a result, the application of nanotechnology, specifically nanoparticle-based approaches, in the diagnosis and treatment of cervical cancer has gained significant attention. This study aims to examine the current research status and future development trends of nanotechnology in relation to cervical cancer using a bibliometric perspective. Methods A bibliometric analysis was performed to gather relevant research papers from the Web of Science database. VOSviewer and CiteSpace were utilized to conduct quantitative analysis and identify hot topics in the field, focusing on countries, institutions, journals, authors, and keywords. Result A total of 997 eligible literature were retrieved. From January 1, 2014 to September 20, 2023, the overall number of publications showed an upward trend. The paper mainly comes from China (n=414). The main institution is the Chinese Academy of Sciences (n=62), and 60% of the top 10 institutions in the number of documents issued are from China. First authors Ma, Rong (n=12) and Alifu, Nuernisha (n=12). The journal with the highest publication volume is ACS Applied Materials&INTERFACES (n=35), and the journal with the highest citation frequency is BIOMATERIALS (n=508). "Nanoparticles (n=295)", "cervical cancer (n=248)", and "drug delivery (n=218)" are the top three most frequently occurring keywords. In recent years, photothermal therapy and indocyanine green have become research hotspots. Conclusion The application of nanotechnology in the field of cervical cancer has garnered considerable attention. Nanoparticles-based methods for diagnosis, administration, and treatment have proven to be instrumental in enhancing the sensitivity of cervical cancer detection, improving the accuracy and efficiency of administration, and reducing drug toxicity. Enhancing treatment efficacy and improving patient prognosis have emerged as current research priorities and future directions.
Collapse
Affiliation(s)
- Xiangzhi Song
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Xun Li
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Zhiwei Tan
- Department of Pathology, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
| | - Lushun Zhang
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Neurobiology, Chengdu Medical College, Chengdu, China
- Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, China
| |
Collapse
|
7
|
Lachance‐Brais C, Rammal M, Asohan J, Katolik A, Luo X, Saliba D, Jonderian A, Damha MJ, Harrington MJ, Sleiman HF. Small Molecule-Templated DNA Hydrogel with Record Stiffness Integrates and Releases DNA Nanostructures and Gene Silencing Nucleic Acids. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205713. [PMID: 36752390 PMCID: PMC10131789 DOI: 10.1002/advs.202205713] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/18/2022] [Indexed: 05/31/2023]
Abstract
Deoxyribonucleic acid (DNA) hydrogels are a unique class of programmable, biocompatible materials able to respond to complex stimuli, making them valuable in drug delivery, analyte detection, cell growth, and shape-memory materials. However, unmodified DNA hydrogels in the literature are very soft, rarely reaching a storage modulus of 103 Pa, and they lack functionality, limiting their applications. Here, a DNA/small-molecule motif to create stiff hydrogels from unmodified DNA, reaching 105 Pa in storage modulus is used. The motif consists of an interaction between polyadenine and cyanuric acid-which has 3-thymine like faces-into multimicrometer supramolecular fibers. The mechanical properties of these hydrogels are readily tuned, they are self-healing and thixotropic. They integrate a high density of small, nontoxic molecules, and are functionalized simply by varying the molecule sidechain. They respond to three independent stimuli, including a small molecule stimulus. These stimuli are used to integrate and release DNA wireframe and DNA origami nanostructures within the hydrogel. The hydrogel is applied as an injectable delivery vector, releasing an antisense oligonucleotide in cells, and increasing its gene silencing efficacy. This work provides tunable, stimuli-responsive, exceptionally stiff all-DNA hydrogels from simple sequences, extending these materials' capabilities.
Collapse
Affiliation(s)
| | - Mostafa Rammal
- Department of ChemistryMcGill University801 Sherbrooke St WMontrealH3A 0B8Canada
| | - Jathavan Asohan
- Department of ChemistryMcGill University801 Sherbrooke St WMontrealH3A 0B8Canada
| | - Adam Katolik
- Department of ChemistryMcGill University801 Sherbrooke St WMontrealH3A 0B8Canada
| | - Xin Luo
- Department of ChemistryMcGill University801 Sherbrooke St WMontrealH3A 0B8Canada
| | - Daniel Saliba
- Department of ChemistryMcGill University801 Sherbrooke St WMontrealH3A 0B8Canada
| | - Antranik Jonderian
- Department of ChemistryMcGill University801 Sherbrooke St WMontrealH3A 0B8Canada
| | - Masad J. Damha
- Department of ChemistryMcGill University801 Sherbrooke St WMontrealH3A 0B8Canada
| | | | - Hanadi F. Sleiman
- Department of ChemistryMcGill University801 Sherbrooke St WMontrealH3A 0B8Canada
| |
Collapse
|
8
|
Xia X, Song S, Wen Y, Qi J, Cao L, Liu X, Zhou R, Zhao H. A simple method for fabricating drugs containing a cis-o-diol structure into guanosine-based supramolecular hydrogels for drug delivery. Biomater Sci 2023; 11:3092-3103. [PMID: 36748206 DOI: 10.1039/d3bm00057e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Supramolecular hydrogels are attractive biomaterials for local drug delivery owing to their excellent self-healing, injectable, biodegradable, and biocompatible properties. However, traditional drug-loading approaches based on non-covalent encapsulation and covalent bonding have shown problems such as rapid or difficult drug release, complex reaction processes, low reaction efficiency, and decreased drug activity. Therefore, there is a need to find a simple and efficient method to load drugs into hydrogels, which possess stable drug release ability without impairing drug efficacy. In this study, we introduce dynamic borate ester bonds via a simple one-pot method to load cis-o-diol-containing drugs into guanosine (G)-based supramolecular hydrogels. The experimental results confirm that the dynamic covalent borate ester bonds are formed based on the cis-o-diol groups of the drug and the G in these hydrogels. Meanwhile, the as-prepared G-based hydrogels not only possess self-healing properties and injectability but also have satisfactory biodegradability and biocompatibility. Additionally, the drug can be released from the G-based hydrogel according to the pH-responsive cleavage of the borate ester bonds without affecting drug activity. Overall, these results indicate that the simple one-pot method of utilizing the dynamic borate bond can provide a valuable reference for the design of hydrogel dosage forms.
Collapse
Affiliation(s)
- Xin Xia
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.
| | - Shaojuan Song
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.
| | - Yinghui Wen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.
| | - Jiajia Qi
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, P. R. China
| | - Lideng Cao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.
| | - Xian Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.
| | - Ronghui Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.
| | - Hang Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.
| |
Collapse
|
9
|
Noteborn WM, Vittala SK, Torredemer MB, Maity C, Versluis F, Eelkema R, Kieltyka RE. Switching the Mode of Drug Release from a Reaction-Coupled Low-Molecular-Weight Gelator System by Altering Its Reaction Pathway. Biomacromolecules 2023; 24:377-386. [PMID: 36562759 PMCID: PMC9832487 DOI: 10.1021/acs.biomac.2c01197] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Low-molecular-weight hydrogels are attractive scaffolds for drug delivery applications because of their modular and facile preparation starting from inexpensive molecular components. The molecular design of the hydrogelator results in a commitment to a particular release strategy, where either noncovalent or covalent bonding of the drug molecule dictates its rate and mechanism. Herein, we demonstrate an alternative approach using a reaction-coupled gelator to tune drug release in a facile and user-defined manner by altering the reaction pathway of the low-molecular-weight gelator (LMWG) and drug components through an acylhydrazone-bond-forming reaction. We show that an off-the-shelf drug with a reactive handle, doxorubicin, can be covalently bound to the gelator through its ketone moiety when the addition of the aldehyde component is delayed from 0 to 24 h, or noncovalently bound with its addition at 0 h. We also examine the use of an l-histidine methyl ester catalyst to prepare the drug-loaded hydrogels under physiological conditions. Fitting of the drug release profiles with the Korsmeyer-Peppas model corroborates a switch in the mode of release consistent with the reaction pathway taken: increased covalent ligation drives a transition from a Fickian to a semi-Fickian mode in the second stage of release with a decreased rate. Sustained release of doxorubicin from the reaction-coupled hydrogel is further confirmed in an MTT toxicity assay with MCF-7 breast cancer cells. We demonstrate the modularity and ease of the reaction-coupled approach to prepare drug-loaded self-assembled hydrogels in situ with tunable mechanics and drug release profiles that may find eventual applications in macroscale drug delivery.
Collapse
Affiliation(s)
- Willem
E. M. Noteborn
- Supramolecular
and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RALeiden, The Netherlands
| | - Sandeepa K. Vittala
- Supramolecular
and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RALeiden, The Netherlands
| | - Maria Broto Torredemer
- Supramolecular
and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RALeiden, The Netherlands
| | - Chandan Maity
- Department
of Chemical Engineering, Delft University
of Technology, Van der
Maasweg 9, 2629 HZDelft, The Netherlands
| | - Frank Versluis
- Department
of Chemical Engineering, Delft University
of Technology, Van der
Maasweg 9, 2629 HZDelft, The Netherlands
| | - Rienk Eelkema
- Department
of Chemical Engineering, Delft University
of Technology, Van der
Maasweg 9, 2629 HZDelft, The Netherlands
| | - Roxanne E. Kieltyka
- Supramolecular
and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RALeiden, The Netherlands,
| |
Collapse
|
10
|
Chen L, Liu Y, Guo W, Liu Z. Light responsive nucleic acid for biomedical application. EXPLORATION (BEIJING, CHINA) 2022; 2:20210099. [PMID: 37325506 PMCID: PMC10190984 DOI: 10.1002/exp.20210099] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/03/2022] [Indexed: 06/16/2023]
Abstract
Nucleic acids are widely used in biomedical applications because of their programmability and biocompatibility. The light responsive nucleic acids have attracted wide attention due to their remote control and high spatiotemporal resolution. In this review, we summarized the latest developments in biomedicine of light responsive molecules. The molecules which confer light responsive properties to nucleic acids were summarized. The binding sites of molecules to nucleic acids, the induced structural changes, and functional regulation of nucleic acids were reviewed. Then, the biomedical applications of light responsive nucleic acids were listed, such as drug delivery, biosensing, optogenetics, gene editing, etc. Finally, the challenges were discussed and possible future directions of light-responsive nucleic acids were proposed.
Collapse
Affiliation(s)
- Liwei Chen
- Department of Pharmaceutical EngineeringCollege of Chemistry and Chemical EngineeringCentral South UniversityChangshaHunan ProvinceP. R. China
| | - Yanfei Liu
- Department of Pharmaceutical EngineeringCollege of Chemistry and Chemical EngineeringCentral South UniversityChangshaHunan ProvinceP. R. China
| | - Weisheng Guo
- Department of Minimally Invasive Interventional RadiologyGuangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences & The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdong ProvinceP. R. China
| | - Zhenbao Liu
- Department of PharmaceuticsXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan ProvinceP. R. China
- Molecular Imaging Research Center of Central South UniversityChangshaHunan ProvinceP. R. China
| |
Collapse
|
11
|
Li J, Zhang Y, Zhu L, Chen K, Li X, Xu W. Smart Nucleic Acid Hydrogels with High Stimuli-Responsiveness in Biomedical Fields. Int J Mol Sci 2022; 23:1068. [PMID: 35162990 PMCID: PMC8835224 DOI: 10.3390/ijms23031068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/10/2022] [Accepted: 01/15/2022] [Indexed: 02/01/2023] Open
Abstract
Due to their hydrophilic, biocompatible and adjustability properties, hydrogels have received a lot of attention. The introduction of nucleic acids has made hydrogels highly stimuli-responsiveness and they have become a new generation of intelligent biomaterials. In this review, the development and utilization of smart nucleic acid hydrogels (NAHs) with a high stimulation responsiveness were elaborated systematically. We discussed NAHs with a high stimuli-responsiveness, including pure NAHs and hybrid NAHs. In particular, four stimulation factors of NAHs were described in details, including pH, ions, small molecular substances, and temperature. The research progress of nucleic acid hydrogels in biomedical applications in recent years is comprehensively discussed. Finally, the opportunities and challenges facing the future development of nucleic acid hydrogels are also discussed.
Collapse
Affiliation(s)
- Jie Li
- Food Science and Engineering College, Beijing University of Agriculture, Beijing 102206, China
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100191, China
| | - Yangzi Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100191, China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100191, China
| | - Keren Chen
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100191, China
| | - Xiangyang Li
- Food Science and Engineering College, Beijing University of Agriculture, Beijing 102206, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100191, China
| |
Collapse
|
12
|
Tang J, Liu L, Gao S, Qin J, Liu X, Tang D. A portable thermal detection method based on the target responsive hydrogel mediated self-heating of a warming pad. Chem Commun (Camb) 2021; 57:9862-9865. [PMID: 34490870 DOI: 10.1039/d1cc03733a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple thermal aptasensing platform was devised for the sensitive detection of organophosphate pesticides (using malathion as a model target) based on the efficient self-heating reaction of a warming pad with a switchable target responsive enzyme-encapsulated three-dimensional (3D) DNA hydrogel using a portable thermometer as a signal readout in this work. The existence of the target malathion would open the catalase-3D network and lots of catalase was released from the hydrogel, which could efficiently convert H2O2 to an O2 molecule. The product O2 is the critical condition for the self-heating of the warming pad. Thereafter, the temperature was enhanced with the increasing amount of O2. The strategy displays outstanding specificity, reproducibility and stability. Moreover, this method can be easily extended to monitor other molecules using different aptamer sequences in practical applications.
Collapse
Affiliation(s)
- Juan Tang
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, Nanchang, 330022, P. R. China.
| | - Liping Liu
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, Nanchang, 330022, P. R. China.
| | - Shan Gao
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, Nanchang, 330022, P. R. China.
| | - Jiao Qin
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, Nanchang, 330022, P. R. China.
| | - Xiaoxuan Liu
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, Nanchang, 330022, P. R. China.
| | - Dianping Tang
- Key Laboratory of Analysis and Detection for Food Safety (Ministry of Education of China and Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| |
Collapse
|
13
|
Alenaizan A, Fauché K, Krishnamurthy R, Sherrill CD. Noncovalent Helicene Structure between Nucleic Acids and Cyanuric Acid. Chemistry 2021; 27:4043-4052. [DOI: 10.1002/chem.202004390] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/08/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Asem Alenaizan
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta GA 30332-0400 USA
- Center for Computational Molecular Science and Technology Georgia Institute of Technology Atlanta GA 30332-0400 USA
- NSF-NASA Center for Chemical Evolution Atlanta GA 30332 USA
| | - Kévin Fauché
- NSF-NASA Center for Chemical Evolution Atlanta GA 30332 USA
- Department of Chemistry The Scripps Research Institute La Jolla CA 92037 USA
| | - Ramanarayanan Krishnamurthy
- NSF-NASA Center for Chemical Evolution Atlanta GA 30332 USA
- Department of Chemistry The Scripps Research Institute La Jolla CA 92037 USA
| | - C. David Sherrill
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta GA 30332-0400 USA
- Center for Computational Molecular Science and Technology Georgia Institute of Technology Atlanta GA 30332-0400 USA
- NSF-NASA Center for Chemical Evolution Atlanta GA 30332 USA
- School of Computational Science and Engineering Georgia Institute of Technology Atlanta GA 30332-0765 USA
| |
Collapse
|