1
|
Davies JA, Ronson TK, Nitschke JR. Triamine and Tetramine Edge-Length Matching Drives Heteroleptic Triangular and Tetragonal Prism Assembly. J Am Chem Soc 2024; 146:5215-5223. [PMID: 38349121 PMCID: PMC10910536 DOI: 10.1021/jacs.3c11320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/31/2023] [Accepted: 01/13/2024] [Indexed: 02/29/2024]
Abstract
Heteroleptic metal-organic capsules, which incorporate more than one type of ligand, can provide enclosed, anisotropic interior cavities for binding low-symmetry molecules of biological and industrial importance. However, the selective self-assembly of a single mixed-ligand architecture, as opposed to the numerous other possible self-assembly outcomes, remains a challenge. Here, we develop a design strategy for the subcomponent self-assembly of heteroleptic metal-organic architectures with anisotropic internal void spaces. Zn6Tet3Tri2 triangular prismatic and Zn8Tet2Tet'4 tetragonal prismatic architectures were prepared through careful matching of the side lengths of the tritopic (Tri) or tetratopic (Tet, Tet') and panels.
Collapse
Affiliation(s)
- Jack A. Davies
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Tanya K. Ronson
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Jonathan R. Nitschke
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
2
|
Coordination-driven chiral self-assembly: Synthesis, structures and vapor adsorption properties of Zn(II) and Ag(I) complexes derived from two helical pyridylamide ligands. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Liu Q, Jin B, Li Q, Yang H, Luo Y, Li X. Self-sorting assembly of artificial building blocks. SOFT MATTER 2022; 18:2484-2499. [PMID: 35266949 DOI: 10.1039/d2sm00153e] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Self-assembly to build high-level structures, which is ubiquitous in living systems, has captured the imagination of scientists, striving to emulate the intricacy, homogeneity and versatility of the naturally occurring systems, and to pursue a similar level of organization in artificial building blocks. In particular, self-sorting assembly in multicomponent systems, based on the spontaneous recognition and consequent spatial aggregation of the same or interactive building units, is able to realize very complicated assembly behaviours, and usually results in multiple well-ordered products or hierarchical structures in a one-step manner. This highly efficient assembly strategy has attracted tremendous research attention in recent years, and numerous examples have been reported in artificial systems, particularly with supramolecular and polymeric building blocks. In the current review, we summarize the progress in recent years, and classify them into five main categories, based on their working mechanisms or principles. With the review of these strategies, we hope to provide not only some deep insights into this field, but also and more importantly, useful thoughts in the design and fabrication of self-sorting systems in the future.
Collapse
Affiliation(s)
- Qianwei Liu
- School of Material Science and Engineering, Beijing Institute of China, Beijing 100081, People's Republic of China.
| | - Bixin Jin
- School of Material Science and Engineering, Beijing Institute of China, Beijing 100081, People's Republic of China.
| | - Qin Li
- School of Material Science and Engineering, Beijing Institute of China, Beijing 100081, People's Republic of China.
| | - Huanzhi Yang
- School of Material Science and Engineering, Beijing Institute of China, Beijing 100081, People's Republic of China.
| | - Yunjun Luo
- School of Material Science and Engineering, Beijing Institute of China, Beijing 100081, People's Republic of China.
- Key Laboratory of High Energy Density Materials, Ministry of Education, Beijing Institute of China, Beijing 100081, People's Republic of China
| | - Xiaoyu Li
- School of Material Science and Engineering, Beijing Institute of China, Beijing 100081, People's Republic of China.
- Key Laboratory of High Energy Density Materials, Ministry of Education, Beijing Institute of China, Beijing 100081, People's Republic of China
- Experimental Centre of Advanced Materials, Beijing Institute of China, Beijing 100081, People's Republic of China
| |
Collapse
|
4
|
Hamashima K, Yuasa J. Entropy Versus Enthalpy Controlled Temperature/Redox Dual‐Triggered Cages for Selective Anion Encapsulation and Release. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kyosuke Hamashima
- Department of Applied Chemistry Tokyo University of Science 1–3 Kagurazaka Shinjuku-ku, Tokyo 162-8601 Japan
| | - Junpei Yuasa
- Department of Applied Chemistry Tokyo University of Science 1–3 Kagurazaka Shinjuku-ku, Tokyo 162-8601 Japan
| |
Collapse
|
5
|
Hamashima K, Yuasa J. Entropy Versus Enthalpy Controlled Temperature/Redox Dual-Triggered Cages for Selective Anion Encapsulation and Release. Angew Chem Int Ed Engl 2021; 61:e202113914. [PMID: 34796586 DOI: 10.1002/anie.202113914] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Indexed: 11/08/2022]
Abstract
New C3 -symmetric imidazole ligands were designed with phosphine and phosphine oxide linkers (LP and LPO , respectively) to demonstrate a dual-triggered dynamic closed coordination cage. Both LP and LPO form discrete Zn4 L4 -closed cages (1P and 1PO , respectively) with excellent selectively for BPh4 - , whereas 1P and 1PO encapsulate neither a slightly larger size anion [B(C6 H4 CH3 )4 - ] nor smaller size anions (BF4 - , PF6 - , SbF6 - , and OSO2 CF3 - ). 1PO exhibits more negative enthalpy and entropy changes upon anion encapsulation, thus releasing almost all of the encapsulated anions at high temperature (343 K) (trigger 1: BPh4 - ⊂1PO ← → 1PO +BPh4 - ). In contrast 1P has less negative enthalpy and entropy changes, thus preserving the captured anion over a wide range of temperatures (298 K to 343 K). The 1P cage can be quantitatively oxidized to the 1PO cage by a mild oxidant (Ox.=H2 O2 ), and therefore the captured anion can be released by a redox triggering event (trigger 2: BPh4 - ⊂1P +Ox.→1PO +BPh4 - ).
Collapse
Affiliation(s)
- Kyosuke Hamashima
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Junpei Yuasa
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| |
Collapse
|
6
|
Suko N, Itamoto H, Okayasu Y, Okura N, Yuasa J. Helix-mediated over 1 nm-range chirality recognition by ligand-to-ligand interactions of dinuclear helicates. Chem Sci 2021; 12:8746-8754. [PMID: 34257874 PMCID: PMC8246085 DOI: 10.1039/d1sc01611c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/13/2021] [Indexed: 12/18/2022] Open
Abstract
Long-range chirality recognition between the two chiral guest ligands can be tuned based on the helix distances (dLn–Ln = 11.5 and 14.0 Å) of bis-diketonate bridged dinuclear lanthanide complexes (2Th and 3Th, respectively) used as mediators. Both 2Th and 3Th form one-dimensional (1D) helical structures upon terminal binding of two chiral guest co-ligands (LR or LS). Long-range chiral self-recognition is achieved in self-assembly of 2Th with LR and LS to preferentially form homochiral assemblies, 2Th-LR·LR and 2Th-LS·LS, whereas there is no direct molecular interaction between the two guest ligands at the terminal edges. X-ray crystal structure analysis and density functional theory studies reveal that long-range chiral recognition is achieved by terminal ligand-to-ligand interactions between the bis-diketonate ligands and chiral guest co-ligands. Conversely, in self-assembly of 3Th with a longer helix length, statistical binding of LR and LS occurs, forming heterochiral (3Th-LR·LS) and homochiral (3Th-LR·LR and 3Th-LS·LS) assemblies in an almost 1 : 1 ratio. When phenyl side arms of the chiral guest co-ligands are replaced by isopropyl groups (L′R and L′S), chiral self-recognition is also achieved in the self-assembly process of 3Th with the longer helix length to generate homochiral (3Th-L′R·L′R and 3Th-L′S·L′S) assemblies as the favored products. Thus, subtle modification of the chiral guests is capable of achieving over 1.4 nm-range chirality recognition. Long-range chirality recognition between the two chiral guest ligands can be tuned based on the helix distances (dLn–Ln = 11.5 and 14.0 Å) of bis-diketonate bridged dinuclear lanthanide complexes (2Th and 3Th, respectively).![]()
Collapse
Affiliation(s)
- Natsumi Suko
- Department of Applied Chemistry, Tokyo University of Science 1-3, Kagurazaka Shunjuku-ku Tokyo 162-8601 Japan
| | - Hideki Itamoto
- Department of Applied Chemistry, Tokyo University of Science 1-3, Kagurazaka Shunjuku-ku Tokyo 162-8601 Japan
| | - Yoshinori Okayasu
- Department of Applied Chemistry, Tokyo University of Science 1-3, Kagurazaka Shunjuku-ku Tokyo 162-8601 Japan
| | - Naoya Okura
- Department of Applied Chemistry, Tokyo University of Science 1-3, Kagurazaka Shunjuku-ku Tokyo 162-8601 Japan
| | - Junpei Yuasa
- Department of Applied Chemistry, Tokyo University of Science 1-3, Kagurazaka Shunjuku-ku Tokyo 162-8601 Japan
| |
Collapse
|
7
|
Iseki S, Nonomura K, Kishida S, Ogata D, Yuasa J. Zinc-Ion-Stabilized Charge-Transfer Interactions Drive Self-Complementary or Complementary Molecular Recognition. J Am Chem Soc 2020; 142:15842-15851. [PMID: 32786739 DOI: 10.1021/jacs.0c05940] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Here, we show that charge-transfer interactions determine whether donor and acceptor ditopic ligands will associate in a complementary or self-complementary fashion upon metal-ion clipping. Anthracene-based (9,10LD and 1,5LD) and anthraquinone-based (1,5LA) ditopic ligands containing two imidazole side arms as zinc coordination sites were designed. The 9,10LD and 1,5LA systems associated in a complementary fashion (LA/LD/LA) upon clipping by two zinc ions (Zn2+) to form an alternating donor-acceptor assembly [(9,10LD)(1,5LA)2-(Zn2+)2]. However, once the charge-transfer interactions were perturbed by subtle modifications of the imidazole side arms (9,10LD'(S) and 1,5LA'(S)), self-complementary association (LD'/LD'/LD'/LD' and LA'/LA'/LA'/LA') between the donor (9,10LD'(S)) and acceptor (1,5LA'(S)) ligands predominantly occurred to form homoassemblies [(9,10LD'(S))4-(Zn2+)2 and (1,5LA'(S))4-(Zn2+)2]. As in the case of a homochiral pair (9,10LD'(S) and 1,5LA'(S)), self-complementary association (narcissistic self-sorting) occurred in the Zn2+ assembly with heterochiral combinations of the donor and acceptor ligands (9,10LD'(S)/1,5LA'(R) and 9,10LD'(S)/1,5LA'(R)/1,5LA'(R)). Narcissistic self-sorting also took place between the positional isomer of the donor ligands (9,10LD and 1,5LD) to form individual homoligand assemblies [(9,10LD)4-(Zn2+)2 and (1,5LD)4-(Zn2+)2]. Conversely, statistical association took place in the Zn2L4 assembly process of an isomorphous pair of the donor and acceptor ligands (1,5LD and 1,5LA).
Collapse
Affiliation(s)
- Shuta Iseki
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Kohei Nonomura
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Sakura Kishida
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Daiji Ogata
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Junpei Yuasa
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|