1
|
Li D, Huang Q, Wang K. Exonuclease III-propelled DNAzyme walker: an electrochemical strategy for microRNA diagnostics. Mikrochim Acta 2024; 191:173. [PMID: 38436735 DOI: 10.1007/s00604-024-06208-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/09/2024] [Indexed: 03/05/2024]
Abstract
MicroRNA detection is crucial for early infectious disease diagnosis and rapid cancer screening. However, conventional techniques like reverse transcription-quantitative polymerase chain reaction, requiring specialized training and intricate procedures, are less suitable for point-of-care analyses. To address this, we've developed a straightforward amplifier based on an exonuclease III (exo III)-propelled DNAzyme walker for sensitive and selective microRNA detection. This amplifier employs a specially designed hairpin probe with two exposed segments for strand recognition. Once the target microRNA is identified by the hairpin's extended single-strand DNA, exo III initiates its digestion, allowing microRNA regeneration and subsequent hairpin probe digestion cycles. This cyclical process produces a significant amount of DNAzyme, leading to a marked reduction in electrochemical signals. The biosensor exhibits a detection range from 10 fM to 100 pM and achieves a detection limit of 5 fM (3σ criterion). Importantly, by integrating an "And logic gate," our system gains the capacity for simultaneous diagnosis of multiple microRNAs, enhancing its applicability in RNA-based disease diagnostics.
Collapse
Affiliation(s)
- Dengke Li
- Department of Rehabilitation Medicine, the Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, 223300, China.
| | - Qiuyan Huang
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Kun Wang
- Department of Physics, New York University, New York, NY, 10003, USA
| |
Collapse
|
2
|
Sun Z, Ren Y, Zhu W, Xiao Y, Wu H. DNA nanotechnology-based nucleic acid delivery systems for bioimaging and disease treatment. Analyst 2024; 149:599-613. [PMID: 38221846 DOI: 10.1039/d3an01871g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Nucleic acids, including DNA and RNA, have been considered as powerful and functional biomaterials owing to their programmable structure, good biocompatibility, and ease of synthesis. However, traditional nucleic acid-based probes have always suffered from inherent limitations, including restricted cell internalization efficiency and structural instability. In recent years, DNA nanotechnology has shown great promise for the applications of bioimaging and drug delivery. The attractive superiorities of DNA nanostructures, such as precise geometries, spatial addressability, and improved biostability, have enabled them to be a novel category of nucleic acid delivery systems for biomedical applications. In this review, we introduce the development of DNA nanotechnology, and highlight recent advances of DNA nanostructure-based delivery systems for cellular imaging and therapeutic applications. Finally, we propose the challenges as well as opportunities for the future development of DNA nanotechnology in biomedical research.
Collapse
Affiliation(s)
- Zhaorong Sun
- Department of Pharmacy, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong, 271000, China
| | - Yingjie Ren
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Wenjun Zhu
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Yuliang Xiao
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Han Wu
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| |
Collapse
|
3
|
Yang R, Liu X, Hu J, Xu H, Song J, Zhou H, Li M, Huang Y, Zhang L, Fan Q. Robust nontarget DNA-triggered catalytic hairpin assembly amplification strategy for the improved sensing of microRNA in complex biological matrices. Analyst 2023; 148:5856-5863. [PMID: 37885382 DOI: 10.1039/d3an01411h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
A simple but robust fluorescence strategy based on a nontarget DNA-triggered catalytic hairpin assembly (CHA) was constructed to probe microRNA-21 (miR-21). A short ssDNA rather than degradable target miRNA was employed as an initiator. Two molecular beacons needed to assist the CHA process were simplified to avoid unfavorable nonspecific interactions. In the presence of the target, the initiator was released from a partially duplex and triggered the cyclic CHA reaction, resulting in a significantly amplified optical readout. A wide linear range from 0.1 pM to 1000 pM for the sensing of miR-21 in buffer was achieved with a low detection limit of 0.76 pM. Fortunately, this strategy demonstrated an obviously improved performance for miR-21 detection in diluted serum. The fluorescence signals were enhanced remarkably and the sensitivity was further improved to 0.12 pM in 10% serum. The stability for miR-21 quantification and the capability for the analysis of single nucleotide polymorphisms (SNPs) were also improved greatly. More importantly, the biosensor could be applied to image miR-21 in different living tumor cells with high resolution, illustrating its promising potential for the assay of miRNAs in various complex situations for early-stage disease diagnosis and biological studies in cells.
Collapse
Affiliation(s)
- Ruining Yang
- The State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Xingfen Liu
- The State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Junbo Hu
- The State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Hui Xu
- Huzhou Key Laboratory of Green Energy Materials and Battery Cascade Utilization, School of Intelligent Manufacturing, Huzhou College, Huzhou 313000, China
| | - Jixiang Song
- The State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Huiyu Zhou
- The State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Meixing Li
- The State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Yanqin Huang
- The State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Lei Zhang
- The State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Quli Fan
- The State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| |
Collapse
|
4
|
Zhu X, Xu J, Ling G, Zhang P. Tunable metal-organic frameworks assist in catalyzing DNAzymes with amplification platforms for biomedical applications. Chem Soc Rev 2023; 52:7549-7578. [PMID: 37817667 DOI: 10.1039/d3cs00386h] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Various binding modes of tunable metal organic frameworks (MOFs) and functional DNAzymes (Dzs) synergistically catalyze the emergence of abundant functional nanoplatforms. Given their serial variability in formation, structural designability, and functional controllability, Dzs@MOFs tend to be excellent building blocks for the precise "intelligent" manufacture of functional materials. To present a clear outline of this new field, this review systematically summarizes the progress of Dz integration into MOFs (MOFs@Dzs) through different methods, including various surface infiltration, pore encapsulation, covalent binding, and biomimetic mineralization methods. Atomic-level and time-resolved catalytic mechanisms for biosensing and imaging are made possible by the complex interplay of the distinct molecular structure of Dzs@MOF, conformational flexibility, and dynamic regulation of metal ions. Exploiting the precision of DNAzymes, MOFs@Dzs constructed a combined nanotherapy platform to guide intracellular drug synthesis, photodynamic therapy, catalytic therapy, and immunotherapy to enhance gene therapy in different ways, solving the problems of intracellular delivery inefficiency and insufficient supply of cofactors. MOFs@Dzs nanostructures have become excellent candidates for biosensing, bioimaging, amplification delivery, and targeted cancer gene therapy while emphasizing major advancements and seminal endeavors in the fields of biosensing (nucleic acid, protein, enzyme activity, small molecules, and cancer cells), biological imaging, and targeted cancer gene delivery and gene therapy. Overall, based on the results demonstrated to date, we discuss the challenges that the emerging MOFs@Dzs might encounter in practical future applications and briefly look forward to their bright prospects in other fields.
Collapse
Affiliation(s)
- Xiaoguang Zhu
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Jiaqi Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
5
|
Li W, Zhang P, Liu C, Xu Y, Gan Z, Kang L, Hou Y. Oncogene-targeting nanoprobes for early imaging detection of tumor. J Nanobiotechnology 2023; 21:197. [PMID: 37340418 DOI: 10.1186/s12951-023-01943-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/29/2023] [Indexed: 06/22/2023] Open
Abstract
Malignant tumors have been one of the major reasons for deaths worldwide. Timely and accurate diagnosis as well as effective intervention of tumors play an essential role in the survival of patients. Genomic instability is the important foundation and feature of cancer, hence, in vivo oncogene imaging based on novel probes provides a valuable tool for the diagnosis of cancer at early-stage. However, the in vivo oncogene imaging is confronted with great challenge, due to the extremely low copies of oncogene in tumor cells. By combining with various novel activatable probes, the molecular imaging technologies provide a feasible approach to visualize oncogene in situ, and realize accurate treatment of tumor. This review aims to declare the design of nanoprobes responded to tumor associated DNA or RNA, and summarize their applications in detection and bioimaging for tumors. The significant challenges and prospective of oncogene-targeting nanoprobes towards tumors diagnosis are revealed as well.
Collapse
Affiliation(s)
- Wenyue Li
- College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 10029, China
| | - Peisen Zhang
- College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 10029, China.
| | - Chuang Liu
- College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 10029, China
| | - Yuping Xu
- College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 10029, China
| | - Zhihua Gan
- College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 10029, China
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, China.
| | - Yi Hou
- College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 10029, China.
| |
Collapse
|
6
|
Xi X, Wu Z, Zhang X, Li Y, Zhao Y, Wen W, Wang S. Endogenous Protease-Activatable Nanosensor Based on PNA-Peptide-DNA Engineering for AND-Gated and Dual-Model Detection of MicroRNA in Single Living Tumor Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21917-21928. [PMID: 37105764 DOI: 10.1021/acsami.3c02012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The in situ detection of low-content cancer biomarkers by an endogenous activator instead of an exogenous initiator in vitro remains a great challenge, leaving a gap in the development of a tumor-specific nanosensor with an endogenous protease-activatable manner. Herein, we proposed an endogenous protease-activatable nanosensor (PA-NS) guided by peptide nucleic acid-peptide-DNA copolymers to realize AND-gated and dual-model sensing of miRNA-21 (miR-21) by combining electrochemical detection with optical imaging in living tumor cells, without an additional introduction of an exogenous activator or nanomaterials. Moreover, the PA-NS can only be activated by "dual keys" (overexpressed miR-21 and cathepsin B protease in tumor cells) simultaneously, which enables effective improvement of the tumor-to-healthy cells ratio. The fluorescence intensity measured in single tumor cells was ∼3.5-fold higher than that in single healthy cells, and the electrochemical response decreased ∼30% in the presence of target miRNA. Furthermore, studies on regulation of the protease activity and miR-21 fluctuation under external stimulation have contributed to our understanding of the biological processes and drug screenings underlying disease development. This specific endogenous protease-mediated manner for dual-model detection of miRNA guarantees excellent tumor-selective capability, which offers new opportunities to study cell heterogeneity and provides more reliable fundamentals for the diagnosis and treatment of cancer down to the single-cell level.
Collapse
Affiliation(s)
- Xiaoxue Xi
- Collaborative Innovation Center for Advanced Organic Chemical Materials, Coconstruted by the Province and Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering. Hubei University, Wuhan 430062, P. R. China
| | - Zhen Wu
- Collaborative Innovation Center for Advanced Organic Chemical Materials, Coconstruted by the Province and Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering. Hubei University, Wuhan 430062, P. R. China
| | - Xiuhua Zhang
- Collaborative Innovation Center for Advanced Organic Chemical Materials, Coconstruted by the Province and Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering. Hubei University, Wuhan 430062, P. R. China
| | - Yuebin Li
- Faculty of Physics and Electronic Sciences, Wuhan 430062, Hubei, P. R. China
| | - Yuandi Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioformatics and Molecular Imaging Key Laboratory, Department of Biomedicine Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Wei Wen
- Collaborative Innovation Center for Advanced Organic Chemical Materials, Coconstruted by the Province and Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering. Hubei University, Wuhan 430062, P. R. China
| | - Shengfu Wang
- Collaborative Innovation Center for Advanced Organic Chemical Materials, Coconstruted by the Province and Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering. Hubei University, Wuhan 430062, P. R. China
| |
Collapse
|
7
|
Liu L, Xiong M, Rong Q, Zhang M, Zhang X. Nucleic acid sensors in vivo: challenges and opportunities. VIEW 2023. [DOI: 10.1002/viw.20220064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
|
8
|
Mo L, He W, Li Z, Liang D, Qin R, Mo M, Yang C, Lin W. Recent progress in the development of DNA-based biosensors integrated with hybridization chain reaction or catalytic hairpin assembly. Front Chem 2023; 11:1134863. [PMID: 36874074 PMCID: PMC9978474 DOI: 10.3389/fchem.2023.1134863] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
As isothermal, enzyme-free signal amplification strategies, hybridization chain reaction (HCR) and catalytic hairpin assembly (CHA) possess the advantages such as high amplification efficiency, excellent biocompatibility, mild reactions, and easy operation. Therefore, they have been widely applied in DNA-based biosensors for detecting small molecules, nucleic acids, and proteins. In this review, we summarize the recent progress of DNA-based sensors employing typical and advanced HCR and CHA strategies, including branched HCR or CHA, localized HCR or CHA, and cascaded reactions. In addition, the bottlenecks of implementing HCR and CHA in biosensing applications are discussed, such as high background signals, lower amplification efficiency than enzyme-assisted techniques, slow kinetics, poor stability, and internalization of DNA probes in cellular applications.
Collapse
Affiliation(s)
- Liuting Mo
- Guangxi Key Laboratory of Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Institute of Optical Materials and Chemical Biology, Guangxi University, Nanning, China
| | - Wanqi He
- Guangxi Key Laboratory of Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Institute of Optical Materials and Chemical Biology, Guangxi University, Nanning, China
| | - Ziyi Li
- Guangxi Key Laboratory of Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Institute of Optical Materials and Chemical Biology, Guangxi University, Nanning, China
| | - Danlian Liang
- Guangxi Key Laboratory of Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Institute of Optical Materials and Chemical Biology, Guangxi University, Nanning, China
| | - Runhong Qin
- Guangxi Key Laboratory of Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Institute of Optical Materials and Chemical Biology, Guangxi University, Nanning, China
| | - Mingxiu Mo
- Guangxi Key Laboratory of Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Institute of Optical Materials and Chemical Biology, Guangxi University, Nanning, China
| | - Chan Yang
- Guangxi Key Laboratory of Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Institute of Optical Materials and Chemical Biology, Guangxi University, Nanning, China
| | - Weiying Lin
- Guangxi Key Laboratory of Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Institute of Optical Materials and Chemical Biology, Guangxi University, Nanning, China
| |
Collapse
|
9
|
Liu J, Xie G, Lv S, Xiong Q, Xu H. Recent applications of rolling circle amplification in biosensors and DNA nanotechnology. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
10
|
Tian Z, Zhou C, Zhang C, Wu M, Duan Y, Li Y. Recent advances of catalytic hairpin assembly and its application in bioimaging and biomedicine. J Mater Chem B 2022; 10:5303-5322. [PMID: 35766024 DOI: 10.1039/d2tb00815g] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Catalytic hairpin assembly (CHA) appears to be a particularly appealing nucleic acid circuit because of its powerful amplification capability, simple protocols, and enzyme-free and isothermal conditions, and can combine with various signal output modes for the biosensing of various analytes. Especially in the last five years, vast CHA related studies have sprung up. With the deep exploration of the CHA mechanism, some novel and excellent CHA strategies have been proposed; meanwhile the CHA cascade strategies with various amplification techniques further improve the analysis performance. Furthermore, diverse CHA based biosensors have been tactfully engineered and extensively employed in imaging applications in living cells and in vivo ascribed to its gentle reaction, efficient amplification and universality. Hence, we present a comprehensive and systematic summary of the progress in CHA and its application in bioimaging and biomedicine to date. At first, we introduced the mechanism and diversification of CHA in detail, including the newly developed CHA and its ingenious combination with a variety of other technologies. Concurrently, we summarized the latest application progress of different CHA strategies in bioimaging and biomedicine, highlighting the merits and drawbacks of representative approaches. Finally, we put forward some views on the challenges and prospects of CHA in bioimaging and biomedicine in the future.
Collapse
Affiliation(s)
- Ziyi Tian
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.
| | - Chen Zhou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.
| | - Chuyan Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.
| | - Mengfan Wu
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, China.
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, China.
| | - Yongxin Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
11
|
Yang Q, Chang X, Lee JY, Olivera TR, Saji M, Wisniewski H, Kim S, Zhang F. Recent Advances in Self-Assembled DNA Nanostructures for Bioimaging. ACS APPLIED BIO MATERIALS 2022; 5:4652-4667. [PMID: 35559619 DOI: 10.1021/acsabm.2c00128] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
DNA nanotechnology has been proven to be a powerful platform to assist the development of imaging probes for biomedical research. The attractive features of DNA nanostructures, such as nanometer precision, controllable size, programmable functions, and biocompatibility, have enabled researchers to design and customize DNA nanoprobes for bioimaging applications. However, DNA probes with low molecular weights (e.g., 10-100 nt) generally suffer from low stability in physiological buffer environments. To improve the stability of DNA nanoprobes in such environments, DNA nanostructures can be designed with relatively larger sizes and defined shapes. In addition, the established modification methods for DNA nanostructures are also essential in enhancing their properties and performances in a physiological environment. In this review, we begin with a brief recap of the development of DNA nanostructures including DNA tiles, DNA origami, and multifunctional DNA nanostructures with modifications. Then we highlight the recent advances of DNA nanostructures for bioimaging, emphasizing the latest developments in probe modifications and DNA-PAINT imaging. Multiple imaging modules for intracellular biomolecular imaging and cell membrane biomarkers recognition are also summarized. In the end, we discuss the advantages and challenges of applying DNA nanostructures in bioimaging research and speculate on its future developments.
Collapse
Affiliation(s)
- Qi Yang
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102, United States
| | - Xu Chang
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102, United States
| | - Jung Yeon Lee
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102, United States
| | - Tiffany R Olivera
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102, United States
| | - Minu Saji
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102, United States
| | - Henry Wisniewski
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102, United States
| | - Suchan Kim
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102, United States
| | - Fei Zhang
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102, United States
| |
Collapse
|
12
|
Xu R, Cheng Y, Li X, Zhang Z, Zhu M, Qi X, Chen L, Han L. Aptamer-based signal amplification strategies coupled with microchips for high-sensitivity bioanalytical applications: A review. Anal Chim Acta 2022; 1209:339893. [DOI: 10.1016/j.aca.2022.339893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023]
|
13
|
Construction of Dual-Target Recognition-Based Specific MicroRNA Detection Method for Acute Pancreatitis Analysis. Appl Biochem Biotechnol 2022; 194:3136-3144. [DOI: 10.1007/s12010-022-03907-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/14/2022] [Indexed: 01/15/2023]
|
14
|
Li J, Luo H. Nicking site enzyme assisted catalytic hairpin assembly based scaffold for sensitive monitoring of miRNA-21. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
15
|
Catalytic hairpin assembly as cascade nucleic acid circuits for fluorescent biosensor: design, evolution and application. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116582] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Nie N, Tang W, Ding X, Guo X, Chen Y. DNAzyme based dual signal amplification strategy for ultrasensitive myocardial ischemia related MiRNA detection. Anal Biochem 2022; 640:114543. [PMID: 34973201 DOI: 10.1016/j.ab.2021.114543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 11/23/2022]
Abstract
Abnormal expression of microRNAs (miRNAs) is closely associated with a diverse of important biological processes, such as metastasis, myocardial ischemia and progression. Development of a facile and enzyme-free method for sensitive miRNA detection remains a huge challenge. Herein, we proposed a cross-catalytic circuit for trace miRNA detection by facilely integrating hairpin catalytic reaction (HCR) and DNAzyme biocatalyst through an ingenious feedback loop. The DNAzyme functional part was originally grafted in the designed hairpin structure probes, which would be released from hairpin structure probe and induce subsequent signal amplification after the recognition of target miRNA and the formation of double-strand DNA products. Through the dual signal amplification, the method exhibited a favorable detection sensitivity with a low of detection of 56 fM. These two indispensable catalytic reactions play vital roles in executing high-performance signal amplification, as demonstrated experimentally and theoretically.
Collapse
Affiliation(s)
- Na Nie
- Orthopedics Department, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing, 401120, China
| | - Wei Tang
- Department of ICU, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing, 401120, China
| | - Xinyue Ding
- Orthopedics Department, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing, 401120, China
| | - Xiang Guo
- Orthopedics Department, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing, 401120, China
| | - Yu Chen
- Department of ICU, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing, 401120, China.
| |
Collapse
|
17
|
Nucleic acid-based fluorescent sensor systems: a review. Polym J 2022. [DOI: 10.1038/s41428-022-00623-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Xing C, Chen S, Lin Q, Lin Y, Wang M, Wang J, Lu C. An aptamer-tethered DNA origami amplifier for sensitive and accurate imaging of intracellular microRNA. NANOSCALE 2022; 14:1327-1332. [PMID: 35014654 DOI: 10.1039/d1nr06399e] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Accurate detection and imaging of low-abundance microRNA (miRNA) in living cells are essential for the diagnosis and prognosis of diseases. Designing nanoprobes with resistance to enzyme degradation, effective cell-binding, and efficient signal amplification is crucial for in vivo imaging. In this study, we present an aptamer-tethered DNA origami amplifier (ADOA) that functions inside living cells to detect miRNA with high sensitivity and stability. In the design, cancer cell-targeting aptamers were tethered onto the border of the DNA origami to improve the discrimination between cancer cells and normal cells. Two substrate modules for the intramolecular entropy-driven reaction (EDR) circuit were alternately arranged on the DNA origami plane. The target miRNA will initiate the sequential hybridization of the two substrate modules on the DNA origami, generating amplified fluorescence signals. The proposed ADOA achieved an accelerated cascade reaction due to the "confinement effect" and significantly enhanced the sensitivity compared with a traditional EDR. Meanwhile, with the rigid structure of the DNA origami, the ADOA possessed excellent signalling stability in living cells. Therefore, the ADOA could expand the application of DNA origami in miRNA sensing and has potential value in early-stage clinical diagnosis.
Collapse
Affiliation(s)
- Chao Xing
- Fujian Key Laboratory of Functional Marine Sensing Materials, Center for Advanced Marine Materials and Smart Sensors, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, P. R. China.
| | - Shan Chen
- College of Geography and Ocean, Minjiang University, Fuzhou 350108, P. R. China
| | - Qitian Lin
- College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China.
| | - Yuhong Lin
- College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China.
| | - Min Wang
- College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China.
| | - Jun Wang
- Fujian Key Laboratory of Functional Marine Sensing Materials, Center for Advanced Marine Materials and Smart Sensors, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, P. R. China.
| | - Chunhua Lu
- College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China.
| |
Collapse
|
19
|
Li Z, Li Q, Wu Y, Yuan K, Shi M, Li Y, Meng HM, Li Z. Multivalent self-assembled nano string lights for tumor-targeted delivery and accelerated biomarker imaging in living cells and in vivo. Analyst 2022; 147:811-818. [DOI: 10.1039/d1an02363b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multivalent self-assembled nano string lights for tumor-targeted delivery with high efficiency and accelerated biomarker imaging in living cells and in vivo.
Collapse
Affiliation(s)
- Zhijun Li
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Qiannan Li
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Yanan Wu
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Kun Yuan
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Mingqing Shi
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Yiwei Li
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Hong-Min Meng
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Zhaohui Li
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
20
|
Wu J, Tian Y, He L, Zhang J, Huang Z, Luo Z, Duan Y. An efficient localized catalytic hairpin assembly-based DNA nanomachine for miRNA-21 imaging in living cells. Analyst 2021; 146:3041-3051. [PMID: 33949412 DOI: 10.1039/d1an00001b] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
As an enzyme-free isothermal amplification strategy, catalytic hairpin assembly (CHA) is a very promising method for cell imaging. However, the practical application of CHA on intracellular miRNA imaging is limited by slow kinetics, insufficient amplification efficiency and strong interference in living cells. Herein, a localized catalytic hairpin assembly-based DNA nanomachine (LCHA nanomachine) was developed for the rapid, efficient and reliable fluorescence resonance energy transformation (FRET) imaging of miRNA-21 in living cells. The nanomachine was simply constructed by a one-step self-assembly process of a stator strand, a pair of hairpin probes from CHA and an AS1411 aptamer. Benefiting from the spatial-confinement effect, a pair of hairpin probes with high collision frequency was rapidly and efficiently assembled using miRNA-21 as the catalyst on a stator strand in every nanomachine. Compared with the free-CHA nanomachine, the LCHA nanomachine shortened the reaction time by 4.5-fold for reaching a plateau and significant improved the sensitivity by 7.6-fold for miRNA-21 detection in vitro. Importantly, the nanomachine was successfully applied for miRNA-21 imaging in living cells. With the assistance of an AS1411 aptamer and stator strand, the pair of hairpin probes with the ratio of 1 : 1 synchronously transported into a co-site of the cytoplasm, which ensures efficient imaging of trace miRNA-21. The signal output of the ratio of 6-carboxy-fluorescein (FAM) to tetramethyl rhodamine (TAMRA) intensities guaranteed reliability through avoiding the interference from different amounts of the nanomachine that enters into cells. Notably, the nanomachine can distinguish the miRNA-21 expression level in different kinds of cancer cells. By virtue of the advantages of simplicity, efficiency and reliability, the proposed strategy provides a powerful method for exploring the functions of miRNA and diagnosis of disease.
Collapse
Affiliation(s)
- Juan Wu
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, Shaanxi, P.R. China.
| | - Yonghui Tian
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, Shaanxi, P.R. China.
| | - Lu He
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, Shaanxi, P.R. China.
| | - Jing Zhang
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, Shaanxi, P.R. China.
| | - Zhijun Huang
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, Shaanxi, P.R. China.
| | - Zewei Luo
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, Shaanxi, P.R. China.
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, Shaanxi, P.R. China.
| |
Collapse
|
21
|
Wang DX, Wang J, Wang YX, Du YC, Huang Y, Tang AN, Cui YX, Kong DM. DNA nanostructure-based nucleic acid probes: construction and biological applications. Chem Sci 2021; 12:7602-7622. [PMID: 34168817 PMCID: PMC8188511 DOI: 10.1039/d1sc00587a] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/04/2021] [Indexed: 12/22/2022] Open
Abstract
In recent years, DNA has been widely noted as a kind of material that can be used to construct building blocks for biosensing, in vivo imaging, drug development, and disease therapy because of its advantages of good biocompatibility and programmable properties. However, traditional DNA-based sensing processes are mostly achieved by random diffusion of free DNA probes, which were restricted by limited dynamics and relatively low efficiency. Moreover, in the application of biosystems, single-stranded DNA probes face challenges such as being difficult to internalize into cells and being easily decomposed in the cellular microenvironment. To overcome the above limitations, DNA nanostructure-based probes have attracted intense attention. This kind of probe showed a series of advantages compared to the conventional ones, including increased biostability, enhanced cell internalization efficiency, accelerated reaction rate, and amplified signal output, and thus improved in vitro and in vivo applications. Therefore, reviewing and summarizing the important roles of DNA nanostructures in improving biosensor design is very necessary for the development of DNA nanotechnology and its applications in biology and pharmacology. In this perspective, DNA nanostructure-based probes are reviewed and summarized from several aspects: probe classification according to the dimensions of DNA nanostructures (one, two, and three-dimensional nanostructures), the common connection modes between nucleic acid probes and DNA nanostructures, and the most important advantages of DNA self-assembled nanostructures in the applications of biosensing, imaging analysis, cell assembly, cell capture, and theranostics. Finally, the challenges and prospects for the future development of DNA nanostructure-based nucleic acid probes are also discussed.
Collapse
Affiliation(s)
- Dong-Xia Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University Tianjin 300071 P. R. China
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Jing Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University Tianjin 300071 P. R. China
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Ya-Xin Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University Tianjin 300071 P. R. China
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Yi-Chen Du
- State Key Laboratory of Medicinal Chemical Biology, Nankai University Tianjin 300071 P. R. China
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Yan Huang
- College of Life Sciences, Nankai University Tianjin 300071 P. R. China
| | - An-Na Tang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University Tianjin 300071 P. R. China
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Yun-Xi Cui
- State Key Laboratory of Medicinal Chemical Biology, Nankai University Tianjin 300071 P. R. China
- College of Life Sciences, Nankai University Tianjin 300071 P. R. China
| | - De-Ming Kong
- State Key Laboratory of Medicinal Chemical Biology, Nankai University Tianjin 300071 P. R. China
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University Tianjin 300071 P. R. China
| |
Collapse
|
22
|
Warminski M, Kowalska J, Nowak E, Kubacka D, Tibble R, Kasprzyk R, Sikorski PJ, Gross JD, Nowotny M, Jemielity J. Structural Insights into the Interaction of Clinically Relevant Phosphorothioate mRNA Cap Analogs with Translation Initiation Factor 4E Reveal Stabilization via Electrostatic Thio-Effect. ACS Chem Biol 2021; 16:334-343. [PMID: 33439620 PMCID: PMC7901015 DOI: 10.1021/acschembio.0c00864] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
mRNA-based
therapies and vaccines constitute a disruptive technology
with the potential to revolutionize modern medicine. Chemically modified
5′ cap structures have provided access to mRNAs with superior
translational properties that could benefit the currently flourishing
mRNA field. Prime examples of compounds that enhance mRNA properties
are antireverse cap analog diastereomers that contain an O-to-S substitution
within the β-phosphate (β-S-ARCA D1 and D2), where D1
is used in clinically investigated mRNA vaccines. The compounds were
previously found to have high affinity for eukaryotic translation
initiation factor 4E (eIF4E) and augment translation in vitro and in vivo. However, the molecular basis for the
beneficial “thio-effect” remains unclear. Here, we employed
multiple biophysical techniques and captured 11 cap analog-eIF4E crystallographic
structures to investigate the consequences of the β-O-to-S or
-Se substitution on the interaction with eIF4E. We determined the SP/RP configurations
of β-S-ARCA and related compounds and obtained structural insights
into the binding. Unexpectedly, in both stereoisomers, the β-S/Se
atom occupies the same binding cavity between Lys162 and Arg157, indicating
that the key driving force for complex stabilization is the interaction
of negatively charged S/Se with positively charged amino acids. This
was observed for all structural variants of the cap and required significantly
different conformations of the triphosphate for each diastereomer.
This finding explains why both β-S-ARCA diastereomers have higher
affinity for eIF4E than unmodified caps. Binding affinities determined
for di-, tri-, and oligonucleotide cap analogs suggested that the
“thio-effect” was preserved in longer RNAs. Our observations
broaden the understanding of thiophosphate biochemistry and enable
the rational design of translationally active mRNAs and eIF4E-targeting
drugs.
Collapse
Affiliation(s)
- Marcin Warminski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Elzbieta Nowak
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Ksiecia Trojdena 4, 02-109 Warsaw, Poland
| | - Dorota Kubacka
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Ryan Tibble
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158, United States
| | - Renata Kasprzyk
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Pawel J. Sikorski
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - John D. Gross
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158, United States
| | - Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Ksiecia Trojdena 4, 02-109 Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|