1
|
Ding R, Gang D, Tang X, Wu T, Liu L, Mao YY, Li ZR, Gao H. Sulfonyl Radical-Induced Regioselective Cyclization of Enamide-Olefin To Form Sulfonylated 6-7-Membered Cyclic Enamines. J Org Chem 2024; 89:15733-15738. [PMID: 39413396 DOI: 10.1021/acs.joc.4c01835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Remarkable progress has been made in the radical cascade cyclization of heteroaryl- or aryl-tethered alkenes to construct benzene-fused frameworks via the cracking of aryl C-H bonds. In contrast, the radical cascade cyclization of linear dienes through the cracking of vinyl C-H bonds to construct nonbenzene-fused ring frameworks with endocyclic double bonds has significantly lagged behind, and major advances have largely been restricted to the generation of 5-membered heterocycles, such as pyrrolinones. Herein, we report the silver-mediated regioselective sulfonylation-cyclization of linear dienes with sodium sulfinates to form sulfonylated 6- and 7-membered cyclic enamines.
Collapse
Affiliation(s)
- Ran Ding
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Chuzhou, Anhui 233100, P. R. China
| | - Dong Gang
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Chuzhou, Anhui 233100, P. R. China
| | - Xu Tang
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Chuzhou, Anhui 233100, P. R. China
| | - Tao Wu
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Chuzhou, Anhui 233100, P. R. China
| | - Lei Liu
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Chuzhou, Anhui 233100, P. R. China
| | - Yue-Yuan Mao
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Chuzhou, Anhui 233100, P. R. China
| | - Zi-Rong Li
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Chuzhou, Anhui 233100, P. R. China
| | - Hui Gao
- School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| |
Collapse
|
2
|
Yi R, Li Q, Liu H, Wei WT. Recent Advancements in Metal-Catalyst-Free Multicomponent Radical Sulfonylation of Alkynes. Chemistry 2024; 30:e202401386. [PMID: 38837287 DOI: 10.1002/chem.202401386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024]
Abstract
Vinyl sulfones are crucial building blocks in synthetic chemistry and core structural units of pharmaceutically active molecules, thus extensive investigations have been conducted on the construction of these skeletons. In contrast to the classical synthetic approaches, the radical sulfonylation of alkynes for producing vinyl sulfones has garnered considerable interest because of its mild conditions and high efficiency. Radical sulfonation of alkynes typically begins with the sulfonyl radical attacking the alkynes, followed by further functionalization. Moreover, the association of metal-catalyst-free systems with multicomponent reactions (MCRs) offers an environmentally friendly pathway for efficiently constructing complex scaffolds from readily available partners. However, there is no comprehensive review summarizing the advancements in metal-catalyst-free multicomponent radical sulfonylation of alkynes. Hence, we provide a categorical overview based on the objects of sulfonylation of alkynes (hydrosulfonylation, carbosulfonylation, aminosulfonylation, oxysulfonylation, sulfosulfonylation, selenosulfonylation, and iodosulfonylation), along with interpretations of the reaction mechanisms.
Collapse
Affiliation(s)
- Rongnan Yi
- Key Laboratory of Food & Environment & Drug Monitoring and Testing of Universities in Hunan Province, Hunan Police Academy, Changsha, 410138, China
| | - Qiang Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Hongxin Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252000, China
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Wen-Ting Wei
- School of Materials Science and Chemical Engineering, Ningbo University, Zhejiang, 315211, China
| |
Collapse
|
3
|
Duan Y, Zheng Z, Yu Z, Sun S, Lin B, Liu X, Liu P. Catalyst-Free α- trans-Selective Hydroboration and ( E)-Selective Deuterated Semihydrogenation of Alkynyl Sulfones. J Org Chem 2024; 89:8326-8333. [PMID: 38817078 DOI: 10.1021/acs.joc.3c02833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Here, we present a straightforward α-trans-selective hydroboration of alkynyl sulfones with NHC-boranes without the need for a catalyst. This reaction is compatible with a wide range of substrates for efficiently producing structurally diverse α-borylated vinyl sulfones in satisfactory yields. The hydride transfer from NHC-borane 2a to alkynyl triflone 1b is studied by density functional theory (DFT) calculations for trans-hydroboration. Moreover, a regiodivergent deuterated semihydrogenation of alkynyl triflones has also been developed using D2O as the deuterium source. A variety of diversity-oriented D-containing vinyl triflones were prepared in good to excellent yields with excellent deuterium incorporation ratios. Synthetic manipulations of the deuterated products are achieved for the conversion into valuable deuterated molecules, indicating the utility of this protocol.
Collapse
Affiliation(s)
- Yunnan Duan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Zhouqing Zheng
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Zhiwei Yu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shitao Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bin Lin
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaozu Liu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Peijun Liu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
4
|
Kumar R, Bhadoria D, Kant R, Kumar A. Regio- and Stereoselective Intermolecular 1,2-Difunctionalization of Terminal Alkynes: An Approach to Access ( Z)-β-Amidovinylsulfones. J Org Chem 2024; 89:2873-2884. [PMID: 38354303 DOI: 10.1021/acs.joc.3c02155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
We have developed the first I2/base-catalyzed regio- and stereoselective intermolecular β-amidosulfonylation of terminal alkynes using sodium sulfinates and quinoxalinone derivatives. The present methodology is compatible with a broad spectrum of various heterocyclic amides, terminal alkynes, and sodium sulfinates. It provides rapid access to valuable (Z)-β-amidovinyl sulfones at mild conditions. Moreover, the synthetic application of this methodology was demonstrated by the late-stage functionalization of numerous bioactive molecules.
Collapse
Affiliation(s)
- Rajesh Kumar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, P.O. Box 173, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Deepak Bhadoria
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, P.O. Box 173, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ruchir Kant
- Molecular and Structural Biology, CSIR-Central Drug Research Institute, P.O. Box 173, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Atul Kumar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, P.O. Box 173, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
5
|
Hosseininezhad S, Ramazani A. Recent advances in the application of alkynes in multicomponent reactions. RSC Adv 2024; 14:278-352. [PMID: 38173570 PMCID: PMC10759206 DOI: 10.1039/d3ra07670a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/02/2023] [Indexed: 01/05/2024] Open
Abstract
Alkynes have two active positions to carry out chemical reactions: C[triple bond, length as m-dash]C and C-H. These two positions are involved and activated in different reactions using different reagents. In this study, we investigated the reactions of alkynes that are involved in multi-component reactions through the C-C and C-H positions and examined the progress and gaps of each reaction by carefully studying the mechanism of the reactions. Firstly, we investigated and analyzed the reactions involving the C[triple bond, length as m-dash]C position of alkynes, including the reactions between derivatives of alkynes with RN3, sulfur compounds (RSO2R', DMSO, S8, DABCO(SO2)2 and DABSO), barbituric acids, aldehydes and amines, COOH, α-diazoesters or ketones, and isocyanides. Then, we examined and analyzed the important reactions involving the C-H position of alkynes and the progress and gaps in these reactions, including the reaction between alkyne derivatives with amines and aldehydes for the synthesis of propargylamines, the reaction between alkynes with CO2 and the reaction between alkynes with CO.
Collapse
Affiliation(s)
- Seyedmohammad Hosseininezhad
- The Organic Chemistry Research Laboratory (OCRL), Department of Chemistry, Faculty of Science, University of Zanjan Zanjan 45371-38791 Iran
| | - Ali Ramazani
- The Organic Chemistry Research Laboratory (OCRL), Department of Chemistry, Faculty of Science, University of Zanjan Zanjan 45371-38791 Iran
- The Convergent Sciences & Technologies Laboratory (CSTL), Research Institute of Modern Biological Techniques (RIMBT), University of Zanjan Zanjan 45371-38791 Iran
| |
Collapse
|
6
|
Bhadoria D, Kumar R, Kant R, Kumar A. Regio- and Stereoselective Intermolecular Oxysulfonylation of Alkynes with 1,3-Diketones to Access ( Z)-β-Sulfonated Enethers. J Org Chem 2023; 88:13666-13677. [PMID: 37737722 DOI: 10.1021/acs.joc.3c01345] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
The first multicomponent regio- and stereoselective difunctionalization of alkynes via concomitant C-O and C-S bond formation using 1,3-diketones and sodium sulfinate has been developed for the synthesis of various sulfonated enethers. The viability of this strategy is unveiled by gram-scale, various synthetic modifications and late-stage functionalization. This transformation does not require any prefunctionalization, metal catalysts, and oxidants. The present operationally simple, efficient, and sustainable approach provides various functionalized olefins in a one-pot protocol with high Z-selectivity.
Collapse
Affiliation(s)
- Deepak Bhadoria
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rajesh Kumar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
| | - Ruchir Kant
- Molecular and Structural Biology, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
| | - Atul Kumar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
7
|
Aleti RR, Festa AA, Storozhenko OA, Bondarev VL, Segida OO, Paveliev SA, Rybakov VB, Varlamov AV, Voskressensky LG. Electrochemical Decarbonylative Aminosulfonylation of Alkynes with Sulfinates and N-(Formyl)anilides. Org Lett 2022; 24:9337-9341. [PMID: 36516277 DOI: 10.1021/acs.orglett.2c03985] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An unprecedented electrochemical three-component reaction of phenylacetylene, sulfinate, and N-(formyl)anilide was discovered. The transformation occurs in an undivided cell with a graphite anode and cathode in DMF in the presence of tetrabutylammonium iodide as an electrolyte. The addition of silver(I) oxide and catalytic amounts of iodine facilitated the reaction significantly. The transformation was also carried out under photoredox-catalyzed conditions.
Collapse
Affiliation(s)
- Rajeshwar Reddy Aleti
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st., 6, Moscow 117198, Russia
| | - Alexey A Festa
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st., 6, Moscow 117198, Russia
| | - Olga A Storozhenko
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st., 6, Moscow 117198, Russia
| | - Vladimir L Bondarev
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st., 6, Moscow 117198, Russia
| | - Oleg O Segida
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky Prospect, Moscow 119991, Russian Federation
| | - Stanislav A Paveliev
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky Prospect, Moscow 119991, Russian Federation
| | - Victor B Rybakov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, Moscow 119991, Russia
| | - Alexey V Varlamov
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st., 6, Moscow 117198, Russia
| | - Leonid G Voskressensky
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st., 6, Moscow 117198, Russia
| |
Collapse
|
8
|
Tripathi S, Kumar M, Ambule MD, Saxena A, Kant R, Shukla SK, Srivastava AK. Stereodivergent Synthesis of ( Z)-/( E)-β-Sulfonylacrylamides via Tandem Difunctionalization of Alkynes with Sulfinates and Isocyanides. Org Lett 2022; 24:7632-7636. [PMID: 36222482 DOI: 10.1021/acs.orglett.2c03092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Stereoselective difunctionalizations of the terminal and internal alkynes with various sulfinates and isocyanides have been achieved to prepare (Z)-/(E)-β-sulfonylacrylamides. The (Z)-β-sulfonylacrylamides were generated via a one-pot process that involves the reaction of terminal alkynes with sulfinates and isocyanides in the presence of iodine in sequential manner. The (E)-β-sulfonylacrylamides were prepared in a two-step synthesis via palladium(II)-catalyzed addition of isocyanide to (E)-β-iodovinylsulfones synthesized from alkynes.
Collapse
Affiliation(s)
- Shashank Tripathi
- Medicinal and Process Chemistry Division, CSIR-CDRI, Lucknow 226031, India.,AcSIR, Ghaziabad 201002, India
| | - Monty Kumar
- Medicinal and Process Chemistry Division, CSIR-CDRI, Lucknow 226031, India.,AcSIR, Ghaziabad 201002, India
| | - Mayur D Ambule
- Medicinal and Process Chemistry Division, CSIR-CDRI, Lucknow 226031, India.,AcSIR, Ghaziabad 201002, India
| | - Ankit Saxena
- AcSIR, Ghaziabad 201002, India.,SAIF, CSIR-CDRI, Lucknow 226031, India
| | - Ruchir Kant
- Biochemistry & Structural Biology Division, CSIR-CDRI, Lucknow 226031, India
| | - Sanjeev K Shukla
- AcSIR, Ghaziabad 201002, India.,SAIF, CSIR-CDRI, Lucknow 226031, India
| | - Ajay Kumar Srivastava
- Medicinal and Process Chemistry Division, CSIR-CDRI, Lucknow 226031, India.,AcSIR, Ghaziabad 201002, India
| |
Collapse
|
9
|
Fang Y, Xu D, Yu Y, Tang R, Dai S, Wang Z, Zhang W. Controlled Synthesis of β‐keto Sulfones and Vinyl Sulfones under Electrochemical Oxidation. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yang Fang
- Anhui Normal University College of Chemistry and Materials Science Wuhu CHINA
| | - Dongping Xu
- Anhui Normal University College of Chemistry and Materials Science Wuhu CHINA
| | - Yingliang Yu
- Anhui Normal University College of Chemistry and Materials Science Wuhu CHINA
| | - Rumeng Tang
- Anhui Normal University College of Chemistry and Materials Science Wuhu CHINA
| | - Shuaishuai Dai
- Anhui Normal University College of Chemistry and Materials Science Wuhu CHINA
| | - Zhenghua Wang
- Anhui Normal University College of Chemistry and Materials Science Wuhu CHINA
| | - Wu Zhang
- Anhui Normal University College of Chemistry and Materials Science 1 Beijing Eastroad 241000 Wuhu CHINA
| |
Collapse
|
10
|
Zheng Y, Qian S, Xu P, Zheng B, Huang S. Electrochemical Oxidative Thiocyanosulfonylation of Aryl Acetylenes. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202209041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
11
|
Sahoo AK, Dahiya A, Das B, Behera A, Patel BK. Visible-Light-Mediated Difunctionalization of Alkynes: Synthesis of β-Substituted Vinylsulfones Using O- and S-Centered Nucleophiles. J Org Chem 2021; 86:11968-11986. [PMID: 34346693 DOI: 10.1021/acs.joc.1c01350] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An inimitable illustration of a green-light-induced, regioselective difunctionalization of terminal alkynes has been disclosed using sodium arylsulfinates and carboxylic acids in the presence of eosin Y as the photocatalyst. The present methodology is further demonstrated by employing NH4SCN as an S-centered nucleophile instead of carboxylic acid. The mechanistic investigation reveals a radical-induced iodosulfonylation followed by a base-mediated nucleophilic substitution. The mechanism is supported by various studies, viz., radical-trapping experiment, fluorescence quenching, and CV studies. In this protocol, (Z)-β-substituted vinylsulfones are obtained, exclusively covering a broad range of alkynes and nucleophiles, which are often unaddressed. The present strategy can tolerate structurally discrete substrates with steric bulk and different electronic properties, which provides a straightforward and practical pathway for the synthesis of highly functionalized (Z)-β-substituted vinylsulfones. Herein, C-O and C-S bonds are assembled simultaneously with the concomitant introduction of important functional groups, viz., ester, thiocyanate, and sulfone.
Collapse
Affiliation(s)
- Ashish Kumar Sahoo
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Anjali Dahiya
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Bubul Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Ahalya Behera
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
12
|
Zhang M, Zeng X. Metal-Free Radical Thiocyanatosulfonation of Terminal Alkynes in Aqueous Medium. Org Lett 2021; 23:3326-3330. [PMID: 33858134 DOI: 10.1021/acs.orglett.1c00820] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Here we report a novel and practical approach for preparing (E)-β-(thiocyanato)vinyl sulfones through the 1,2-thiocyanatosulfonation of terminal alkynes with NH4SCN and sulfonyl hydrazides. Advantages of this reaction include mild conditions, the absence of metal, readily available reagents, a broad substrate scope, good functional group compatibility, and excellent stereoselectivity. The radical species-induced pathway is also demonstrated by mechanistic studies.
Collapse
Affiliation(s)
- Mingmei Zhang
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, P. R. China
| | - Xianghua Zeng
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, P. R. China
| |
Collapse
|
13
|
Wu H, Shao C, Wu D, Jiang L, Yin H, Chen FX. Atom-Economical Thiocyanation-Amination of Alkynes with N-Thiocyanato-Dibenzenesulfonimide. J Org Chem 2021; 86:5327-5335. [PMID: 33703903 DOI: 10.1021/acs.joc.0c02780] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A highly regioselective protocol for intermolecular thiocyanation-amination of alkynes by N-thiocyano-dibenzenesulfonimide (NTSI) as the SCN and nitrogen sources has been developed. A C-S bond and C-N bond are simultaneously constructed in only one step. The reaction under simple mild conditions features a broad substrate scope, atom economy, high yields (up to 94%), and excellent functional group tolerance.
Collapse
Affiliation(s)
- Haopeng Wu
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China
| | - Chukai Shao
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China
| | - Di Wu
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China
| | - Liang Jiang
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China
| | - Hongquan Yin
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China.,State Key Laboratory of Medicinal Chemical Biology, NanKai University, No. 94 Wei Jin Road, Nankai District, Tianjin, 300071, China
| | - Fu-Xue Chen
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China
| |
Collapse
|
14
|
Swarnkar S, Ansari MY, Kumar A. Visible-Light-Induced Tertiary C(sp3)–H Sulfonylation: An Approach to Tertiary Sulfones. Org Lett 2021; 23:1163-1168. [DOI: 10.1021/acs.orglett.0c03898] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Sumedha Swarnkar
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
| | - Mohd Yeshab Ansari
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
| | - Atul Kumar
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
- Academy of Scientific and Innovative Research, New Delhi 110001, India
| |
Collapse
|