1
|
Han C, Song A, He Y, Yang L, Chen L, Dai W, Wu Q, Yuan S. Genome mining and biosynthetic pathways of marine-derived fungal bioactive natural products. Front Microbiol 2024; 15:1520446. [PMID: 39726967 PMCID: PMC11669671 DOI: 10.3389/fmicb.2024.1520446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Marine fungal natural products (MFNPs) are a vital source of pharmaceuticals, primarily synthesized by relevant biosynthetic gene clusters (BGCs). However, many of these BGCs remain silent under standard laboratory culture conditions, delaying the development of novel drugs from MFNPs to some extent. This review highlights recent efforts in genome mining and biosynthetic pathways of bioactive natural products from marine fungi, focusing on methods such as bioinformatics analysis, gene knockout, and heterologous expression to identify relevant BGCs and elucidate the biosynthetic pathways and enzyme functions of MFNPs. The research efforts presented in this review provide essential insights for future gene-guided mining and biosynthetic pathway analysis in MFNPs.
Collapse
Affiliation(s)
- Caihua Han
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Anjing Song
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Yueying He
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Liu Yang
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Litong Chen
- Center of Ocean Expedition, School of Atmospheric Science, Sun Yat-sen University, Zhuhai, China
| | - Wei Dai
- Teaching and Experimental Center, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qilin Wu
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Siwen Yuan
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| |
Collapse
|
2
|
Yu J, Zhang Y, Zhang L, Shi J, Wang K, Yuan W, Lin Z, Ning S, Wang B, Wang X, Qiu Y, Hsiang T, Zhang L, Liu X, Zhu G. New N-acylated aminoalkanoic acids from tea roots derived biocontrol agent Clonostachys rosea 15020. Synth Syst Biotechnol 2024; 9:684-693. [PMID: 38846337 PMCID: PMC11153888 DOI: 10.1016/j.synbio.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 06/09/2024] Open
Abstract
Four new N-acylated aminoalkanoic acids, namely clonoroseins E-H (1-4), together with three previously identified analogs, clonoroseins A, B, and D (5-7), were identified from the endophytic fungus Clonostachys rosea strain 15020 (CR15020), using Feature-based Molecular Networking (FBMN). The elucidation of their chemical structures, including their absolute configurations, was achieved through spectroscopic analysis combined with quantum chemical calculations. Bioinformatics analyses suggested that an iterative type I HR-PKS (CrsE) generates the polyketide side chain of these clonoroseins. Furthermore, a downstream adenylate-forming enzyme of the PKS (CrsD) was suspected to function as an amide synthetase. CrsD potentially facilitates the transformation of the polyketide moiety into an acyl-AMP intermediate, followed by nucleophilic substitution with either β-alanine or γ-aminobutyric acid to produce amide derivatives. These findings significantly expand our understanding of PKS-related products originating from C. rosea and also underscore the powerful application of FBMN analytical methods in characterization of new compounds.
Collapse
Affiliation(s)
- Jiaming Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yue Zhang
- Department of Chemistry, Boston University, Boston, MA, USA
| | - Li Zhang
- Department of Chemistry, Boston University, Boston, MA, USA
| | - Jie Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kun Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weize Yuan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zexu Lin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shangqian Ning
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bohao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xinye Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuyang Qiu
- School of Insurance, Shandong University of Finance and Economics, Jinan, 250014, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xueting Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Guoliang Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
3
|
Yan D, Matsuda Y. Methyltransferase Domain-Focused Genome Mining for Fungal Polyketide Synthases. SMALL METHODS 2024; 8:e2400107. [PMID: 38644685 PMCID: PMC11579551 DOI: 10.1002/smtd.202400107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/05/2024] [Indexed: 04/23/2024]
Abstract
A comparison of substrate-binding site amino acid residues in the C-methyltransferase (MT) domains of fungal nonreducing polyketide synthases (NR-PKSs) suggests that these residues are correlated with the methylation modes used by the PKSs. A PKS, designated as AsbPKS, with substrate-binding site residues distinct from those of other known PKSs is focused on. The characterization of AsbPKS revealed that it yields an isocoumarin derivative, anhydrosclerotinin B (1), the biosynthesis of which involves a previously unreported methylation pattern. This study demonstrates the utility of MT domain-focused genome mining for the discovery of PKSs with new functions.
Collapse
Affiliation(s)
- Dexiu Yan
- Department of ChemistryCity University of Hong KongTat Chee AvenueKowloonHong Kong SARChina
| | - Yudai Matsuda
- Department of ChemistryCity University of Hong KongTat Chee AvenueKowloonHong Kong SARChina
| |
Collapse
|
4
|
Lv K, Duan Y, Li X, Wang X, Xing C, Lan K, Zhu B, Zhu G, Qiu Y, Li S, Hsiang T, Zhang L, Jiang L, Liu X. Identifying sesterterpenoids via feature-based molecular networking and small-scale fermentation. Appl Microbiol Biotechnol 2024; 108:483. [PMID: 39377838 PMCID: PMC11461746 DOI: 10.1007/s00253-024-13299-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/12/2024] [Accepted: 08/30/2024] [Indexed: 10/09/2024]
Abstract
Terpenoids are known for their diverse structures and broad bioactivities with significant potential in pharmaceutical applications. However, natural products with low yields are usually ignored in traditional chemical analysis. Feature-based molecular networking (FBMN) was developed recently to cluster compounds with similar skeletons, which can highlight trace amounts of unknown compounds. Fusoxypene A is a sesterterpene synthesized by Fusarium oxysporum fusoxypene synthase (FoFS) with a unique 5/6/7/3/5 ring system. In this study, the FoFS-containing biosynthetic gene cluster was identified from F. oxysporum FO14005, and an efficient FBMN-based strategy was established to characterize four new sesterterpenoids, fusoxyordienoid A-D (1-4), based on a small-scale fermentation strategy. A cytochrome P450 monooxygenase, FusB, was found to be involved in the functionalization of fusoxypene A at C-17 and C-24 and responsible for the hydroxylation of fusoxyordienoid A at C-1 and C-8. This study highlights the potential of FBMN as a powerful tool for the discovery and characterization of natural compounds with low abundance. KEY POINTS: Combined small-scale fermentation and FBMN for rapid discovery of fusoxyordienoids Characterization of four new fusoxyordienoids with 5/6/7/3/5 ring system Biosynthetic pathway elucidation via tandem expression and substrate feeding.
Collapse
Affiliation(s)
- Kangjie Lv
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai, 200237, China
| | - Yuyang Duan
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai, 200237, China
| | - Xiaoying Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai, 200237, China
| | - Xinye Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai, 200237, China
| | - Cuiping Xing
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai, 200237, China
| | - Keying Lan
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai, 200237, China
| | - Bin Zhu
- Lab of Pharmaceutical Crystal Engineering Research and Technology, East China University of Science and Technology, Shanghai, 200237, China
| | - Guoliang Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai, 200237, China
| | - Yuyang Qiu
- School of Insurance, Shandong University of Finance and Economics, Jinan, 250014, China
| | - Songwei Li
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai, 200237, China
| | - Lan Jiang
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210093, China.
| | - Xueting Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai, 200237, China.
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210093, China.
| |
Collapse
|
5
|
Winkler M, Ling JG. Biocatalytic carboxylate reduction – recent advances and new enzymes. ChemCatChem 2022. [DOI: 10.1002/cctc.202200441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Margit Winkler
- Technische Universitat Graz Austrian Centre of Industrial Biotechnology Petersgasse 14 8010 Graz AUSTRIA
| | - Jonathan Guyang Ling
- Universiti Kebangsaan Malaysia Fakulti Sains dan Teknologi Department of Biological Sciences and Biotechnology 43600 Bangi MALAYSIA
| |
Collapse
|
6
|
Jarmusch SA, van der Hooft JJJ, Dorrestein PC, Jarmusch AK. Advancements in capturing and mining mass spectrometry data are transforming natural products research. Nat Prod Rep 2021; 38:2066-2082. [PMID: 34612288 PMCID: PMC8667781 DOI: 10.1039/d1np00040c] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: 2016 up to 2021Mass spectrometry (MS) is an essential technology in natural products research with MS fragmentation (MS/MS) approaches becoming a key tool. Recent advancements in MS yield dense metabolomics datasets which have been, conventionally, used by individual labs for individual projects; however, a shift is brewing. The movement towards open MS data (and other structural characterization data) and accessible data mining tools is emerging in natural products research. Over the past 5 years, this movement has rapidly expanded and evolved with no slowdown in sight; the capabilities of today vastly exceed those of 5 years ago. Herein, we address the analysis of individual datasets, a situation we are calling the '2021 status quo', and the emergent framework to systematically capture sample information (metadata) and perform repository-scale analyses. We evaluate public data deposition, discuss the challenges of working in the repository scale, highlight the challenges of metadata capture and provide illustrative examples of the power of utilizing repository data and the tools that enable it. We conclude that the advancements in MS data collection must be met with advancements in how we utilize data; therefore, we argue that open data and data mining is the next evolution in obtaining the maximum potential in natural products research.
Collapse
Affiliation(s)
- Scott A Jarmusch
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, DK-2800 Kongens Lyngby, Denmark.
| | | | - Pieter C Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093-0751, USA
| | - Alan K Jarmusch
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093-0751, USA
- Immunity, Inflammation, and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
7
|
Capecchi A, Reymond JL. Classifying natural products from plants, fungi or bacteria using the COCONUT database and machine learning. J Cheminform 2021; 13:82. [PMID: 34663470 PMCID: PMC8524952 DOI: 10.1186/s13321-021-00559-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/02/2021] [Indexed: 01/13/2023] Open
Abstract
Natural products (NPs) represent one of the most important resources for discovering new drugs. Here we asked whether NP origin can be assigned from their molecular structure in a subset of 60,171 NPs in the recently reported Collection of Open Natural Products (COCONUT) database assigned to plants, fungi, or bacteria. Visualizing this subset in an interactive tree-map (TMAP) calculated using MAP4 (MinHashed atom pair fingerprint) clustered NPs according to their assigned origin ( https://tm.gdb.tools/map4/coconut_tmap/ ), and a support vector machine (SVM) trained with MAP4 correctly assigned the origin for 94% of plant, 89% of fungal, and 89% of bacterial NPs in this subset. An online tool based on an SVM trained with the entire subset correctly assigned the origin of further NPs with similar performance ( https://np-svm-map4.gdb.tools/ ). Origin information might be useful when searching for biosynthetic genes of NPs isolated from plants but produced by endophytic microorganisms.
Collapse
Affiliation(s)
- Alice Capecchi
- 1 Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Jean-Louis Reymond
- 1 Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland.
| |
Collapse
|
8
|
Jiang L, Huang P, Ren B, Song Z, Zhu G, He W, Zhang J, Oyeleye A, Dai H, Zhang L, Liu X. Antibacterial polyene-polyol macrolides and cyclic peptides from the marine-derived Streptomyces sp. MS110128. Appl Microbiol Biotechnol 2021; 105:4975-4986. [PMID: 34146138 DOI: 10.1007/s00253-021-11226-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/27/2021] [Accepted: 03/07/2021] [Indexed: 02/05/2023]
Abstract
Marine microbes provide an important resource to discover new chemical compounds with biological activities beneficial to drug discovery. In our study, two new polyene macrolides, pyranpolyenolides A (1) and B (2), and one new natural cyclic peptide (9), together with two known polyenes (7 and 8) and three known cyclic peptides (10-12), were isolated from a culture of the marine Streptomyces sp. MS110128. In addition, four new polyene macrolides, pyranpolyenolides C-F (3-6), were identified as olefin geometric isomers that were most likely produced by photochemical conversion during the cultivation or isolation procedures. The pyranpolyenolides are 32-membered macrolides endowed with a conjugated tetraene and several pairs of 1,3-dihydroxyl groups. Pyranpolyenolides that contain a hydropyran group have not been previously reported. Four cyclic peptides (9-12) showed significant activities against Bacillus subtilis, Staphylococcus aureus, and methicillin-resistant S. aureus with supporting MIC values ranging from 0.025 to 1.25 μg/mL. These cyclic peptides containing piperazic moieties showed moderate activities with MIC values of 12.5 μg/mL against Bacille Calmette Guerin (BCG), an attenuated form of the bovine. Additionally, cyclic peptide 12 showed moderate antifungal activity against Candida albicans with an MIC value of 12.5 μg/mL. KEY POINTS: • Discovery of new polyenes and cyclic peptides from a marine-derived Actinomycete. • Cyclic peptides containing piperazic moieties exhibited good antibacterial activity.
Collapse
Affiliation(s)
- Lan Jiang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Pei Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Department of Pediatric Hematology/Oncology, Affiliated Hospital of Zunyi Medical University/Guizhou Children's Hospital, Zunyi, 563000, Guizhou, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zhijun Song
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guoliang Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenni He
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jingyu Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ayokunmi Oyeleye
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Malaysia
| | - Huanqin Dai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xueting Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
9
|
Brites-Neto J, Maimone NM, Piedade SMDS, Andrino FG, Andrade PAMD, Baroni FDA, Gomes LH, Lira SPD. Scorpionicidal activity of secondary metabolites from Paecilomyces sp. CMAA1686 against Tityus serrulatus. J Invertebr Pathol 2021; 179:107541. [PMID: 33524339 DOI: 10.1016/j.jip.2021.107541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 01/18/2021] [Accepted: 01/23/2021] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Urban pests pose enormous risks to human health. Control initiatives are carried out in regions of high infestation and incidence of accidents caused by scorpions OBJECTIVE: In this study, we aimed to analyze the anti-scorpionic activity of fungal isolates obtained from a cemetery in Brazil. MATERIALS AND METHODS A total of thirteen fungi were subjected to a bioassay test against Tityus serrulatus, and the two isolates with the highest scorpionicidal activity were selected for molecular identification through sequencing of the ITS DNA hypervariable region and large-scale cultivation on liquid medium for secondary metabolite extraction. The crude extracts were partitioned by solid-phase extraction, and the resulting purified extracts were tested for anti-scorpionic activity. The extracts from one of the isolates presented better results and were submitted to UPLC-MS/MS. The metabolomics data were submitted to GNPS website for Molecular Networking and MASST searches. We also performed a MolNetEnhancer analysis to identify the chemical classes of the molecules found in the samples. RESULTS The most promising fungal isolate was identified as Paecilomyces sp. CMAA1686 which has 98% of similarity to Paecilomyces formosus. The sub-fractions C and D had the best activity against the scorpions (54 and 32% mortality, respectively). Molecular Networking and MolNetEnhancer revealed a range of molecular classes in our extracts that are known to include bioactive metabolites from Paecilomyces species. CONCLUSIONS The scorpionicidal activity of Paecilomyces sp. CMAA1686 and its secondary metabolites may provide new alternative compounds for biological and chemical control of scorpions from the species T. serrulatus. Paecilomyces sp. CMAA1686 is an isolate that has great potential for isolation of secondary metabolites.
Collapse
Affiliation(s)
- José Brites-Neto
- Department of Exact Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil.
| | - Naydja Moralles Maimone
- Department of Exact Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil.
| | - Sônia Maria De Stefano Piedade
- Department of Exact Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil.
| | - Felipe Gabriel Andrino
- Department of Exact Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil.
| | - Pedro Avelino Maia de Andrade
- Department of Soil Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil.
| | - Francisco de Assis Baroni
- Department of Microbiology and Veterinary Immunology, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil.
| | - Luiz Humberto Gomes
- Department of Exact Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil.
| | - Simone Possedente de Lira
- Department of Exact Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil.
| |
Collapse
|
10
|
Capecchi A, Reymond JL. Assigning the Origin of Microbial Natural Products by Chemical Space Map and Machine Learning. Biomolecules 2020; 10:E1385. [PMID: 32998475 PMCID: PMC7600738 DOI: 10.3390/biom10101385] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 12/20/2022] Open
Abstract
Microbial natural products (NPs) are an important source of drugs, however, their structural diversity remains poorly understood. Here we used our recently reported MinHashed Atom Pair fingerprint with diameter of four bonds (MAP4), a fingerprint suitable for molecules across very different sizes, to analyze the Natural Products Atlas (NPAtlas), a database of 25,523 NPs of bacterial or fungal origin. To visualize NPAtlas by MAP4 similarity, we used the dimensionality reduction method tree map (TMAP). The resulting interactive map organizes molecules by physico-chemical properties and compound families such as peptides and glycosides. Remarkably, the map separates bacterial and fungal NPs from one another, revealing that these two compound families are intrinsically different despite their related biosynthetic pathways. We used these differences to train a machine learning model capable of distinguishing between NPs of bacterial or fungal origin.
Collapse
Affiliation(s)
| | - Jean-Louis Reymond
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland;
| |
Collapse
|
11
|
Wang T, Lu Q, Sun C, Lukianov D, Osterman IA, Sergiev PV, Dontsova OA, Hu X, You X, Liu S, Wu G. Hetiamacin E and F, New Amicoumacin Antibiotics from Bacillus subtilis PJS Using MS/MS-Based Molecular Networking. Molecules 2020; 25:E4446. [PMID: 32992672 PMCID: PMC7583885 DOI: 10.3390/molecules25194446] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 11/17/2022] Open
Abstract
To combat escalating levels of antibiotic resistance, novel strategies are developed to address the everlasting demand for new antibiotics. This study aimed at investigating amicoumacin antibiotics from the desert-derived Bacillus subtilis PJS by using the modern MS/MS-based molecular networking approach. Two new amicoumacins, namely hetiamacin E (1) and hetiamacin F (2), were finally isolated. The planar structures were determined by analysis of extensive NMR spectroscopic and HR-ESI-MS data, and the absolute configurations were concluded by analysis of the CD spectrum. Hetiamacin E (1) showed strong antibacterial activities against methicillin-sensitive and resistant Staphylococcus epidermidis at 2-4 µg/mL, and methicillin-sensitive and resistant Staphylococcus aureus at 8-16 µg/mL. Hetiamacin F (2) exhibited moderate antibacterial activities against Staphylococcus sp. at 32 µg/mL. Both compounds were inhibitors of protein biosynthesis demonstrated by a double fluorescent protein reporter system.
Collapse
Affiliation(s)
- Ting Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (T.W.); (Q.L.); (C.S.); (X.H.); (X.Y.)
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qinpei Lu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (T.W.); (Q.L.); (C.S.); (X.H.); (X.Y.)
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chenghang Sun
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (T.W.); (Q.L.); (C.S.); (X.H.); (X.Y.)
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Dmitrii Lukianov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 143025, Russia; (D.L.); (I.A.O.); (P.V.S.); (O.A.D.)
| | - Ilya Andreevich Osterman
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 143025, Russia; (D.L.); (I.A.O.); (P.V.S.); (O.A.D.)
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Petr Vladimirovich Sergiev
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 143025, Russia; (D.L.); (I.A.O.); (P.V.S.); (O.A.D.)
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Olga Anatolievna Dontsova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 143025, Russia; (D.L.); (I.A.O.); (P.V.S.); (O.A.D.)
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119992, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 119992, Russia
| | - Xinxin Hu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (T.W.); (Q.L.); (C.S.); (X.H.); (X.Y.)
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xuefu You
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (T.W.); (Q.L.); (C.S.); (X.H.); (X.Y.)
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shaowei Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (T.W.); (Q.L.); (C.S.); (X.H.); (X.Y.)
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Gang Wu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (T.W.); (Q.L.); (C.S.); (X.H.); (X.Y.)
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|