1
|
Vishnevskiy YV, Heider Y, Scheschkewitz D. Experimental molecular structures in the gas phase at the upper size limit: The case of Si6Tip6. J Chem Phys 2024; 161:054307. [PMID: 39092937 DOI: 10.1063/5.0219926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Currently, the largest (ramax = 19.9 Å) and by far the most complicated (234 atoms, C1 symmetry, 696 independent geometrical parameters, and 27 261 interatomic terms) experimental molecular structure of a cage-type Si6Tip6 (Tip = 2,4,6-iPr3C6H2) isomer has been investigated in the gas phase by the electron diffraction method (Tav = 645 K) supplemented with theoretical simulations. A detailed analysis of the current possibilities for experimentally investigating large molecular structures is performed. A series of density functional theory approximations and the role of dispersion interactions have been benchmarked using the obtained data. Based on the refined geometry of Si6Tip6, various quantum-chemical methods have been applied for the investigation of the electronic structure of its Si6 core. In particular, natural bond orbital, quantum theory of atoms in molecules, interacting quantum atoms, fractional occupation number weighted density, and complete active space self-consistent field (CASSCF) methods were utilized. The diradical character of the molecule has been assessed by the UHF and CASSCF approximations. The problem of bonding between the hemispheroidal silicon atoms has been investigated.
Collapse
Affiliation(s)
- Yury V Vishnevskiy
- Lehrstuhl für Anorganische Chemie und Strukturchemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Yannic Heider
- Chair in General and Inorganic Chemistry, Saarland University, Campus C4.1, 66123 Saarbrücken, Germany
| | - David Scheschkewitz
- Chair in General and Inorganic Chemistry, Saarland University, Campus C4.1, 66123 Saarbrücken, Germany
| |
Collapse
|
2
|
Akhtar R, Gaurav K, Khan S. Applications of low-valent compounds with heavy group-14 elements. Chem Soc Rev 2024; 53:6150-6243. [PMID: 38757535 DOI: 10.1039/d4cs00101j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Over the last two decades, the low-valent compounds of group-14 elements have received significant attention in several fields of chemistry owing to their unique electronic properties. The low-valent group-14 species include tetrylenes, tetryliumylidene, tetrylones, dimetallenes and dimetallynes. These low-valent group-14 species have shown applications in various areas such as organic transformations (hydroboration, cyanosilylation, N-functionalisation of amines, and hydroamination), small molecule activation (e.g. P4, As4, CO2, CO, H2, alkene, and alkyne) and materials. This review presents an in-depth discussion on low-valent group-14 species-catalyzed reactions, including polymerization of rac-lactide, L-lactide, DL-lactide, and caprolactone, followed by their photophysical properties (phosphorescence and fluorescence), thin film deposition (atomic layer deposition and vapor phase deposition), and medicinal applications. This review concisely summarizes current developments of low-valent heavier group-14 compounds, covering synthetic methodologies, structural aspects, and their applications in various fields of chemistry. Finally, their opportunities and challenges are examined and emphasized.
Collapse
Affiliation(s)
- Ruksana Akhtar
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| | - Kumar Gaurav
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| | - Shabana Khan
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| |
Collapse
|
3
|
Yang W, Li X, Li SY, Li Q, Sun H, Li X. Synthesis of Bis(silylene) Iron Chlorides and Their Catalytic Activity for Dinitrogen Silylation. Inorg Chem 2023; 62:21014-21024. [PMID: 38095917 DOI: 10.1021/acs.inorgchem.3c02445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
In this study, three tetracoordinated bis(silylene) iron(II) chlorides, namely, [SiCHRSi]FeCl2 (1) (R = H), (2) (R = CH3), and (3) (R = Ph), were synthesized through the reactions of the three different bis(silylene) ligands [LSiCHRSiL] (L = PhC(NtBu)2, L1 (R = H), L2 (R = CH3), L3 (R = Ph)) with FeCl2·(THF)1.5 in THF. The bis(silylene) Fe complexes 1-3 could be used as effective catalysts for dinitrogen silylation, with complex 3 demonstrating the highest turnover number (TON) of 746 equiv among the three complexes. The catalytic mechanism was explored, revealing the involvement of the pentacoordinated bis(dinitrogen) iron(0) complexes [SiCHRSi]Fe(N2)2(THF), (4)-(6), as the active catalysts in the dinitrogen silylation reaction. Additionally, the cyclic silylene compound 10 was obtained from the reaction of L1 with KC8. Single-crystal X-ray diffraction analyses confirmed the molecular structures of complexes 1-3 and 10 in the solid state.
Collapse
Affiliation(s)
- Wenjing Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Xiaomiao Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Sheng-Yong Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Qingshuang Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Hongjian Sun
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Xiaoyan Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| |
Collapse
|
4
|
Ding Y, Zhang J, Li Y, Cui C. Disilicon Dicarbonyl Complex: Synthesis and Protonation of CO with O–H Bond. J Am Chem Soc 2022; 144:20566-20570. [DOI: 10.1021/jacs.2c10599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yazhou Ding
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, People’s Republic of China
| | - Jianying Zhang
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, People’s Republic of China
| | - Yang Li
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, People’s Republic of China
| | - Chunming Cui
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, People’s Republic of China
| |
Collapse
|
5
|
Sun X, Hinz A, Kucher H, Gamer MT, Roesky PW. Stereoselective Activation of Small Molecules by a Stable Chiral Silene. Chemistry 2022; 28:e202201963. [PMID: 35762907 DOI: 10.1002/chem.202201963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Indexed: 01/07/2023]
Abstract
The reaction of the dilithium salt of the enantiopure (S)-BINOL (1,1'-bi-2-naphthol) with two equivalents of the amidinate-stabilized chlorosilylene [LPh SiCl] (LPh =PhC(NtBu)2 ) led to the formation of the first example of a chiral cyclic silene species comprising an (S)-BINOL ligand. The reactivity of the Si=C bond was investigated by reaction with elemental sulfur, CO2 and HCl. The reaction with S8 led to a Si=C bond cleavage and concomitantly to a ring-opened product with imine and silanethione functional groups. The reaction with CO2 resulted in the cleavage of the CO2 molecule into a carbonyl group and an isolated O atom, while a new stereocenter is formed in a highly selective manner. According to DFT calculations, the [2+2] cycloaddition product is the key intermediate. Further reactivity studies of the chiral cyclic silene with HCl resulted in a stereoselective addition to the Si=C bond, while the fully selective formation of two stereocenters was achieved. The quantitative stereoselective addition of CO2 and HCl to a Si=C bond is unprecedented.
Collapse
Affiliation(s)
- Xiaofei Sun
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131, Karlsruhe, Germany
| | - Alexander Hinz
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131, Karlsruhe, Germany
| | - Hannes Kucher
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131, Karlsruhe, Germany
| | - Michael T Gamer
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131, Karlsruhe, Germany
| | - Peter W Roesky
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131, Karlsruhe, Germany
| |
Collapse
|
6
|
Keuter J, Dimitrova M, Janka O, Hepp A, Berger RJF, Lips F. An Anionic Amido-Substituted Seven-Vertex Siliconoid Cluster. Chemistry 2022; 28:e202201473. [PMID: 35652723 PMCID: PMC9543723 DOI: 10.1002/chem.202201473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Indexed: 11/09/2022]
Abstract
The silanide [Si4 {N(SiMe3 )Dipp}3 ]- (1) transforms into the anionic siliconoid cluster [Si7 {N(SiMe3 )Dipp}3 ]- (2) with four unsubstituted silicon atoms as a contact ion pair with [K([18]crown-6)] in C6 D6 at room temperature within five weeks. Anion 2 was investigated by natural population analysis and visualization of intrinsic atomic orbitals. Magnetically induced current-density calculations of 2 revealed two distinct strong diatropic vortices that sum up in one direction and create a strongly shielded apical silicon atom in 2.
Collapse
Affiliation(s)
- Jan Keuter
- Westfälische Wilhelms-Universität MünsterInstitut für Anorganische und Analytische ChemieCorrensstraße 28–3048149MünsterGermany
| | - Maria Dimitrova
- Paris-Lodron Universität SalzburgMaterialchemieJakob-Harringerstr. 2a5020SalzburgAustria
| | - Oliver Janka
- Westfälische Wilhelms-Universität MünsterInstitut für Anorganische und Analytische ChemieCorrensstraße 28–3048149MünsterGermany
| | - Alexander Hepp
- Westfälische Wilhelms-Universität MünsterInstitut für Anorganische und Analytische ChemieCorrensstraße 28–3048149MünsterGermany
| | - Raphael J. F. Berger
- Paris-Lodron Universität SalzburgMaterialchemieJakob-Harringerstr. 2a5020SalzburgAustria
| | - Felicitas Lips
- Westfälische Wilhelms-Universität MünsterInstitut für Anorganische und Analytische ChemieCorrensstraße 28–3048149MünsterGermany
| |
Collapse
|
7
|
Garg P, Carpentier A, Douair I, Dange D, Jiang Y, Yuvaraj K, Maron L, Jones C. Activation of CO Using a 1,2-Disilylene: Facile Synthesis of an Abnormal N-Heterocyclic Silylene. Angew Chem Int Ed Engl 2022; 61:e202201705. [PMID: 35238149 DOI: 10.1002/anie.202201705] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Indexed: 11/05/2022]
Abstract
Reaction of the 1,2-disilylene, [{ArC(NDip)2 }Si]2 1 (Dip=2,6-diisopropylphenyl, Ar=4-C6 H4 But ), with CO proceeds via insertion of CO into one Si-N bond, and Si-Si bond cleavage, to cleanly give the bis(silylene), {ArC(NDip)2 }Si(:)O C S i ( : ) ( N D i p ) 2 C ‾ Ar 2, under ambient conditions. The reaction can be partially reversed when solutions of 2 are subjected to UV irradiation. The five-membered heterocyclic fragment of 2 represents the first silicon analogue of an "abnormal" N-heterocyclic carbene (aNHC), a view which is substantiated by a computational analysis of the compound. Reaction of 2 with [Mo(CO)6 ] under UV light affords the chelate complex, [Mo(CO)4 (κ2 -Si,Si-2)] 3, while reaction with [Fe(CO)5 ] gives the unusual silyleneyl bridged complex, [{Fe2 (CO)6 }{μ-Si[(NDip)2 CAr]}2 ] 4. The same coordination complexes can be accessed by reaction of 1 with [Mo(CO)6 ] or [Fe(CO)5 ] under UV light. As is the case for aNHCs, d-block metal complexes of bis(silylene) 2 could prove useful as bespoke catalysts for organic transformations.
Collapse
Affiliation(s)
- Palak Garg
- School of Chemistry, PO Box 23, Monash University, VIC, 3800, Australia
| | - Ambre Carpentier
- Université de Toulouse et CNRS, INSA, UPS, UMR 5215, LPCNO, 135 Avenue de Rangueil, 31077, Toulouse, France
| | - Iskander Douair
- Université de Toulouse et CNRS, INSA, UPS, UMR 5215, LPCNO, 135 Avenue de Rangueil, 31077, Toulouse, France
| | - Deepak Dange
- School of Chemistry, PO Box 23, Monash University, VIC, 3800, Australia
| | - Yixiao Jiang
- School of Chemistry, PO Box 23, Monash University, VIC, 3800, Australia
| | - K Yuvaraj
- School of Chemistry, PO Box 23, Monash University, VIC, 3800, Australia
| | - Laurent Maron
- Université de Toulouse et CNRS, INSA, UPS, UMR 5215, LPCNO, 135 Avenue de Rangueil, 31077, Toulouse, France
| | - Cameron Jones
- School of Chemistry, PO Box 23, Monash University, VIC, 3800, Australia
| |
Collapse
|
8
|
Garg P, Carpentier A, Douair I, Dange D, Jiang Y, Yuvaraj K, Maron L, Jones C. Activation of CO Using a 1,2‐Disilylene: Facile Synthesis of an Abnormal N‐Heterocyclic Silylene. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Palak Garg
- School of Chemistry PO Box 23 Monash University VIC 3800 Australia
| | - Ambre Carpentier
- Université de Toulouse et CNRS, INSA, UPS, UMR 5215, LPCNO 135 Avenue de Rangueil 31077 Toulouse France
| | - Iskander Douair
- Université de Toulouse et CNRS, INSA, UPS, UMR 5215, LPCNO 135 Avenue de Rangueil 31077 Toulouse France
| | - Deepak Dange
- School of Chemistry PO Box 23 Monash University VIC 3800 Australia
| | - Yixiao Jiang
- School of Chemistry PO Box 23 Monash University VIC 3800 Australia
| | - K. Yuvaraj
- School of Chemistry PO Box 23 Monash University VIC 3800 Australia
| | - Laurent Maron
- Université de Toulouse et CNRS, INSA, UPS, UMR 5215, LPCNO 135 Avenue de Rangueil 31077 Toulouse France
| | - Cameron Jones
- School of Chemistry PO Box 23 Monash University VIC 3800 Australia
| |
Collapse
|
9
|
Abstract
The continuously decreasing size of device features in microelectronics draws growing attention to the structuring of silicon at the molecular level with powerful tools provided by synthetic chemistry. Silicon clusters are of particular importance in this regard not only as potential precursors for silicon deposition but also as well-defined model systems for bulk and surfaces of silicon at the nanoscale as well as possible starting points for future construction of molecularly precise device structures. This review aims to give a comprehensive overview about the state of the art in the synthesis of molecular silicon clusters, which are grouped into (1) electron-precise saturated clusters, (2) soluble polyhedral Zintl anions, and (3) unsaturated silicon clusters, the so-called siliconoids. Particular attention is paid to functionalization as it is generally considered a necessary prerequisite for the design and construction of more extended systems. The interrelations between the three different classes of molecular silicon clusters, e.g., arising from the introduction of negatively charged functional groups, are highlighted on grounds of NMR properties and computed electronic structures.
Collapse
Affiliation(s)
- Yannic Heider
- Chair of General and Inorganic Chemistry, Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
| | - David Scheschkewitz
- Chair of General and Inorganic Chemistry, Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
10
|
Iwamoto T, Yin D, Kobayashi A, Tamura M, Motomatsu D, Akasaka N, Yokouchi Y, Ishida S, Kira M. Lithiated 1,3-Disilabicyclo[1.1.0]butanes Synthesized via Selective Cleavage of Exocyclic Si–Si Bonds on Bridgehead Silicon Atoms. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Takeaki Iwamoto
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Dongzhu Yin
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Akifumi Kobayashi
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Makoto Tamura
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Daiki Motomatsu
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Naohiko Akasaka
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Yuki Yokouchi
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Shintaro Ishida
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Mitsuo Kira
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|