1
|
Li M, Mitchell AA, Zhang T, Patrick BO, Fryzuk MD, Gates DP. Enantiopure P-Chiral Secondary Phosphines (P*HRR') from the Catalytic Asymmetric Hydrogenation of P═C Bonds. J Am Chem Soc 2024; 146:25912-25917. [PMID: 39270209 DOI: 10.1021/jacs.4c09501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
We report the first bottleable enantiopure P-chiral secondary phosphines from the rhodium-catalyzed asymmetric hydrogenation of phosphaalkenes. Catalytic asymmetric hydrogenation, a reaction of broad academic and industrial importance for C═C, N═C, and O═C bonds, has not previously been reported for the P═C bond. The hydrogenation of ArP═CR2 (Ar = Mes, m-Xyl and TMOP; R = Ph, 4-C6H4F) affords four unprecedented P-stereogenic secondary phosphines in 76%-90% isolated yields with 91%-97% enantiomeric excess (ee). These isolable P-chiral secondary phosphines are configurationally stable indefinitely in the solid state and show only modest loss in ee when kept in solution for over a month at room temperature.
Collapse
Affiliation(s)
- Ming Li
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada, V6T 1Z1
| | - Aaron A Mitchell
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada, V6T 1Z1
| | - Tian Zhang
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada, V6T 1Z1
| | - Brian O Patrick
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada, V6T 1Z1
| | - Michael D Fryzuk
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada, V6T 1Z1
| | - Derek P Gates
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada, V6T 1Z1
| |
Collapse
|
2
|
Imamoto T. P-Stereogenic Phosphorus Ligands in Asymmetric Catalysis. Chem Rev 2024; 124:8657-8739. [PMID: 38954764 DOI: 10.1021/acs.chemrev.3c00875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Chiral phosphorus ligands play a crucial role in asymmetric catalysis for the efficient synthesis of useful optically active compounds. They are largely categorized into two classes: backbone chirality ligands and P-stereogenic phosphorus ligands. Most of the reported ligands belong to the former class. Privileged ones such as BINAP and DuPhos are frequently employed in a wide range of catalytic asymmetric transformations. In contrast, the latter class of P-stereogenic phosphorus ligands has remained a small family for many years mainly because of their synthetic difficulty. The late 1990s saw the emergence of novel P-stereogenic phosphorus ligands with their superior enantioinduction ability in Rh-catalyzed asymmetric hydrogenation reactions. Since then, numerous P-stereogenic phosphorus ligands have been synthesized and used in catalytic asymmetric reactions. This Review summarizes P-stereogenic phosphorus ligands reported thus far, including their stereochemical and electronic properties that afford high to excellent enantioselectivities. Examples of reactions that use this class of ligands are described together with their applications in the construction of key intermediates for the synthesis of optically active natural products and therapeutic agents. The literature covered dates back to 1968 up until December 2023, centering on studies published in the late 1990s and later years.
Collapse
Affiliation(s)
- Tsuneo Imamoto
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
3
|
Wang C, Yang Q, Dai YH, Xiong J, Zheng Y, Duan WL. Nickel-Catalyzed Asymmetric Synthesis of P-Stereogenic Phosphanyl Hydrazine Building Blocks. Angew Chem Int Ed Engl 2023; 62:e202313112. [PMID: 37770407 DOI: 10.1002/anie.202313112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 09/30/2023]
Abstract
Catalytic asymmetric methods for the synthesis of synthetically versatile P-stereogenic building blocks offer an efficient and practical approach for the diversity-oriented preparation of P-chiral phosphorus compounds. Herein, we report the first nickel-catalyzed synthesis of P-stereogenic secondary aminophosphine-boranes by the asymmetric addition of primary phosphines to azo compounds. We further demonstrate that the P-H and P-N bonds on these phosphanyl hydrazine building blocks can be reacted sequentially and stereospecifically to access various P-stereogenic compounds with structural diversity.
Collapse
Affiliation(s)
- Chuanyong Wang
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, 225002, Yangzhou, China
| | - Qingliang Yang
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, 225002, Yangzhou, China
| | - Yuan-Hao Dai
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, 225002, Yangzhou, China
| | - Jianqi Xiong
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, 225002, Yangzhou, China
| | - Yu Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, 210037, Nanjing, P. R. China
| | - Wei-Liang Duan
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, 225002, Yangzhou, China
- College of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, 010021, Hohhot, China
| |
Collapse
|
4
|
Ma Y, Zhang X, Ma C, Xia W, Hu L, Dong X, Xiong Y. Electrochemically Oxidative Phosphating of Aldehydes and Ketones. J Org Chem 2023; 88:4264-4272. [PMID: 36916510 DOI: 10.1021/acs.joc.2c02826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Disclosed herein is the first protocol for the electrochemically oxidative phosphating of aldehydes and ketones to generate α-hydroxyphosphine oxides with diphenylphosphine as the phosphine source. Various phosphating products containing P-C bonds are basically assembled in modest to excellent yields. This electrochemical phosphating was achieved by utilizing a simple undivided cell with foam nickel electrodes at room temperature without the addition of any oxidant or metal catalyst. The prepared α-hydroxyphosphine oxides possess potential application in pharmacological research.
Collapse
Affiliation(s)
- Youcai Ma
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, Sichuan 401331, China
| | - Xiaohui Zhang
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, Sichuan 401331, China
| | - Chenglong Ma
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, Sichuan 401331, China
| | - Wen Xia
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, Sichuan 401331, China
| | - Liangzhen Hu
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, Sichuan 401331, China
| | - Xiaoyu Dong
- School of Chemical and Environmental Engineering, and Collaborative Innovation Center for High Value Transformation of Coal Chemical Process By-products, Xinjiang Institute of Engineering, Xinjiang 830091, China
| | - Yan Xiong
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, Sichuan 401331, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China.,School of Chemical and Environmental Engineering, and Collaborative Innovation Center for High Value Transformation of Coal Chemical Process By-products, Xinjiang Institute of Engineering, Xinjiang 830091, China
| |
Collapse
|
5
|
Zhang Y, Yuan J, Huang G, Yu H, Liu J, Chen J, Meng S, Zhong JJ, Dang L, Yu GA, Che CM. Direct visible-light-induced synthesis of P-stereogenic phosphine oxides under air conditions. Chem Sci 2022; 13:6519-6524. [PMID: 35756532 PMCID: PMC9172294 DOI: 10.1039/d2sc00036a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/11/2022] [Indexed: 02/06/2023] Open
Abstract
Over the past two decades, visible-light-induced transformations have been regarded as being among the most environmentally benign and powerful strategies for constructing complex molecules and diverse synthetic building blocks in organic synthesis. However, the development of efficient photochemical processes for assembling enantiomerically pure molecules remains a significant challenge. Herein, we describe a simple and efficient visible-light-induced C-P bond forming reaction for the synthesis of P-chiral heteroaryl phosphine oxides in moderate to high yields with excellent ee values (97-99% ee). Even in the absence of transition metal or photoredox catalysts, a variety of P-chiral heteroaryl phosphine oxides, including chiral diphosphine oxide 41, have been directly obtained under air conditions. Density functional theory (DFT) calculations have shown that the reaction involves intersystem crossing and single electron transfer to give a diradical intermediate under visible light irradiation.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, and Chemical Biology Center, College of Chemistry, Central China Normal University Wuhan 430079 P. R. China
| | - Jia Yuan
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Guanglong Huang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, and Chemistry and Chemical Engineering Guangdong Laboratory Guangdong 515063 P. R. China
| | - Hong Yu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, and Chemical Biology Center, College of Chemistry, Central China Normal University Wuhan 430079 P. R. China
| | - Jinpeng Liu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, and Chemical Biology Center, College of Chemistry, Central China Normal University Wuhan 430079 P. R. China
| | - Jian Chen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, and Chemical Biology Center, College of Chemistry, Central China Normal University Wuhan 430079 P. R. China
| | - Sixuan Meng
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, and Chemical Biology Center, College of Chemistry, Central China Normal University Wuhan 430079 P. R. China
| | - Jian-Ji Zhong
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, and Chemistry and Chemical Engineering Guangdong Laboratory Guangdong 515063 P. R. China
| | - Li Dang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, and Chemistry and Chemical Engineering Guangdong Laboratory Guangdong 515063 P. R. China
| | - Guang-Ao Yu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, and Chemical Biology Center, College of Chemistry, Central China Normal University Wuhan 430079 P. R. China
| | - Chi-Ming Che
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, and Chemistry and Chemical Engineering Guangdong Laboratory Guangdong 515063 P. R. China
| |
Collapse
|
6
|
P-chirogenic phosphorus compounds by stereoselective Pd-catalysed arylation of phosphoramidites. Nat Catal 2021. [DOI: 10.1038/s41929-021-00697-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Maiti R, Yan J, Yang X, Mondal B, Xu J, Chai H, Jin Z, Chi YR. Carbene‐Catalyzed Enantioselective Hydrophosphination of α‐Bromoenals to Prepare Phosphine‐Containing Chiral Molecules. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Rakesh Maiti
- Division of Chemistry & Mathematical Science School of Physical & Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| | - Jia‐Lei Yan
- Division of Chemistry & Mathematical Science School of Physical & Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| | - Xing Yang
- Division of Chemistry & Mathematical Science School of Physical & Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| | - Bivas Mondal
- Division of Chemistry & Mathematical Science School of Physical & Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| | - Jun Xu
- Guizhou University of Traditional Chinese Medicine Guiyang 550025 China
| | - Huifang Chai
- Guizhou University of Traditional Chinese Medicine Guiyang 550025 China
| | - Zhichao Jin
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University Huaxi District Guiyang 550025 China
| | - Yonggui Robin Chi
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University Huaxi District Guiyang 550025 China
- Division of Chemistry & Mathematical Science School of Physical & Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| |
Collapse
|
8
|
Maiti R, Yan JL, Yang X, Mondal B, Xu J, Chai H, Jin Z, Chi YR. Carbene-Catalyzed Enantioselective Hydrophosphination of α-Bromoenals to Prepare Phosphine-Containing Chiral Molecules. Angew Chem Int Ed Engl 2021; 60:26616-26621. [PMID: 34599547 DOI: 10.1002/anie.202112860] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Indexed: 11/07/2022]
Abstract
Disclosed herein is the first carbene-organocatalyzed asymmetric addition of phosphine nucleophiles to the in situ generated α,β-unsaturated acyl azolium intermediates. Our reaction enantioselectively constructs carbon-phosphine bonds and prepares chiral phosphines with high optical purities. The phosphine products are suitable for transforming to chiral ligands or catalysts with applications in asymmetric catalysis. The diarylalkyl or trialkyl phosphine products from our catalytic reactions, air-sensitive and reactive in nature, can be trapped (and stored) in their sulfur-oxidized form for operational simplicities.
Collapse
Affiliation(s)
- Rakesh Maiti
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Jia-Lei Yan
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Xing Yang
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Bivas Mondal
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Jun Xu
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Huifang Chai
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Zhichao Jin
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Yonggui Robin Chi
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China.,Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
9
|
Rojo P, Riera A, Verdaguer X. BOM-Phosphinite as an Electrophilic P-Stereogenic Transfer Reagent for the Synthesis of Bulky Phosphines: Synthesis of tert-Butyl(3,5-di- tert-butylphenyl)BisP. Org Lett 2021; 23:4802-4806. [PMID: 34080882 DOI: 10.1021/acs.orglett.1c01522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BOM-tert-butylmethylphosphinite borane is an efficient electrophilic P-stereogenic transfer reagent for the synthesis of bulky tertiary phosphines. The novel methodology relies on a one-pot deprotection/substitution on the trivalent phosphinite that takes place with very high stereospecificity. The potential of this strategy is demonstrated with the synthesis of a wide scope of tertiary phosphines in excellent enantiomeric excess. The methodology was applied to the synthesis of a bulky P-stereogenic BisP* ligand analogue.
Collapse
Affiliation(s)
- Pep Rojo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixach 10, 08028 Barcelona, Spain
| | - Antoni Riera
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixach 10, 08028 Barcelona, Spain.,Departament de Química Inorgànica i Orgànica, Secció Química Orgànica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Xavier Verdaguer
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixach 10, 08028 Barcelona, Spain.,Departament de Química Inorgànica i Orgànica, Secció Química Orgànica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| |
Collapse
|