1
|
Lee LCC, Lo KKW. Shining New Light on Biological Systems: Luminescent Transition Metal Complexes for Bioimaging and Biosensing Applications. Chem Rev 2024; 124:8825-9014. [PMID: 39052606 PMCID: PMC11328004 DOI: 10.1021/acs.chemrev.3c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Luminescence imaging is a powerful and versatile technique for investigating cell physiology and pathology in living systems, making significant contributions to life science research and clinical diagnosis. In recent years, luminescent transition metal complexes have gained significant attention for diagnostic and therapeutic applications due to their unique photophysical and photochemical properties. In this Review, we provide a comprehensive overview of the recent development of luminescent transition metal complexes for bioimaging and biosensing applications, with a focus on transition metal centers with a d6, d8, and d10 electronic configuration. We elucidate the structure-property relationships of luminescent transition metal complexes, exploring how their structural characteristics can be manipulated to control their biological behavior such as cellular uptake, localization, biocompatibility, pharmacokinetics, and biodistribution. Furthermore, we introduce the various design strategies that leverage the interesting photophysical properties of luminescent transition metal complexes for a wide variety of biological applications, including autofluorescence-free imaging, multimodal imaging, organelle imaging, biological sensing, microenvironment monitoring, bioorthogonal labeling, bacterial imaging, and cell viability assessment. Finally, we provide insights into the challenges and perspectives of luminescent transition metal complexes for bioimaging and biosensing applications, as well as their use in disease diagnosis and treatment evaluation.
Collapse
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
2
|
Rico A, Le Poul P, Rodríguez-López J, Achelle S, Gauthier S. Exploring structural and optical properties of a new series of soft salts based on cyclometalated platinum complexes. Dalton Trans 2024; 53:11417-11425. [PMID: 38900145 DOI: 10.1039/d4dt01188k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
A series of nine new soft salts based on two platinum(II) complexes, namely ([Pt(C^N)(CN)2]-[Pt(C^N)(en)]+) (en = ethane-1,2-diamine), has been developed and synthesized. Their photophysical properties in both solution and the solid state were described. All soft salt complexes exhibit phosphorescence emission with PLQY in the solid state up to 0.36. Most of these materials displayed aggregation-induced emission (AIE) or aggregation-induced emission enhancement (AIEE) in water/DMSO solutions as the water ratio increased. Structure-property relationships were analyzed in relation to emission properties. The presence of the free nitrogen atoms in soft salt complexes with a C^N pyrimidine-based ligand allowed for reversible sensitivity to acidic vapors, resulting in the quenching of phosphorescence emission. Additionally, for selected soft salts, we described reversible vapochromism behaviour, making these new materials interesting for multi-detection purposes in anti-counterfeiting applications.
Collapse
Affiliation(s)
- Alexandre Rico
- Univ. Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35000 Rennes, France.
| | - Pascal Le Poul
- Univ. Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35000 Rennes, France.
| | - Julián Rodríguez-López
- Universidad de Castilla-La Mancha, Área de Química Orgánica, Facultad de Ciencias y Tecnologías Químicas, Avda. Camilo José Cela 10, 13071, Ciudad Real, Spain
| | - Sylvain Achelle
- Univ. Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35000 Rennes, France.
| | - Sébastien Gauthier
- Univ. Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35000 Rennes, France.
| |
Collapse
|
3
|
De Soricellis G, Fagnani F, Colombo A, Dragonetti C, Roberto D. Exploring the potential of N^C^N cyclometalated Pt(II) complexes bearing 1,3-di(2-pyridyl)benzene derivatives for imaging and photodynamic therapy. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
4
|
Luminescent Metal Complexes for Bioassays in the Near-Infrared (NIR) Region. Top Curr Chem (Cham) 2022; 380:31. [PMID: 35715540 DOI: 10.1007/s41061-022-00386-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/14/2022] [Indexed: 10/18/2022]
Abstract
Near-infrared (NIR, 700-1700 nm) luminescent imaging is an emerging bioimaging technology with low photon scattering, minimal autofluorescence, deep tissue penetration, and high spatiotemporal resolution that has shown fascinating promise for NIR imaging-guided theranostics. In recent progress, NIR luminescent metal complexes have attracted substantially increased research attention owing to their intrinsic merits, including small size, anti-photobleaching, long lifetime, and metal-centered NIR emission. In the past decade, scientists have contributed to the advancement of NIR metal complexes involving efforts to improve photophysical properties, biocompatibility, specificity, pharmacokinetics, in vivo visualization, and attempts to exploit new ligand platforms. Herein, we summarize recent progress and provide future perspectives for NIR metal complexes, including d-block transition metals and f-block lanthanides (Ln) as NIR optical molecular probes for bioassays.
Collapse
|
5
|
Hamidizadeh P, Babadi Aghakhanpour R, Chamyani S, Paziresh S, Shahsavari HR, Nabavizadeh SM. Fine-Tuning of Luminescence Properties of Cyclometalated Platinum(II) Complexes via Aminopyridine Derivatives. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Peyman Hamidizadeh
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | - Reza Babadi Aghakhanpour
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Samira Chamyani
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Sareh Paziresh
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Hamid R. Shahsavari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - S. Masoud Nabavizadeh
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| |
Collapse
|
6
|
Chelushkin PS, Shakirova JR, Kritchenkov IS, Baigildin VA, Tunik SP. Phosphorescent NIR emitters for biomedicine: applications, advances and challenges. Dalton Trans 2021; 51:1257-1280. [PMID: 34878463 DOI: 10.1039/d1dt03077a] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Application of NIR (near-infrared) emitting transition metal complexes in biomedicine is a rapidly developing area of research. Emission of this class of compounds in the "optical transparency windows" of biological tissues and the intrinsic sensitivity of their phosphorescence to oxygen resulted in the preparation of several commercial oxygen sensors capable of deep (up to whole-body) and quantitative mapping of oxygen gradients suitable for in vivo experimental studies. In addition to this achievement, the last decade has also witnessed the increased growth of successful alternative applications of NIR phosphors that include (i) site-specific in vitro and in vivo visualization of sophisticated biological models ranging from 3D cell cultures to intact animals; (ii) sensing of various biologically relevant analytes, such as pH, reactive oxygen and nitrogen species, RedOx agents, etc.; (iii) and several therapeutic applications such as photodynamic (PDT), photothermal (PTT), and photoactivated cancer (PACT) therapies as well as their combinations with other therapeutic and imaging modalities to yield new variants of combined therapies and theranostics. Nevertheless, emerging applications of these compounds in experimental biomedicine and their implementation as therapeutic agents practically applicable in PDT, PTT, and PACT face challenges related to a critically important improvement of their photophysical and physico-chemical characteristics. This review outlines the current state of the art and achievements of the last decade and stresses the most promising trends, major development prospects, and challenges in the design of NIR phosphors suitable for biomedical applications.
Collapse
Affiliation(s)
- Pavel S Chelushkin
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504, St. Petersburg, Russia.
| | - Julia R Shakirova
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504, St. Petersburg, Russia.
| | - Ilya S Kritchenkov
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504, St. Petersburg, Russia.
| | - Vadim A Baigildin
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504, St. Petersburg, Russia.
| | - Sergey P Tunik
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504, St. Petersburg, Russia.
| |
Collapse
|
7
|
Li J, Chen K, Wei J, Ma Y, Zhou R, Liu S, Zhao Q, Wong WY. Reversible On-Off Switching of Excitation-Wavelength-Dependent Emission of a Phosphorescent Soft Salt Based on Platinum(II) Complexes. J Am Chem Soc 2021; 143:18317-18324. [PMID: 34694133 DOI: 10.1021/jacs.1c09272] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Excitation-wavelength-dependent (Ex-De) emission materials show excellent potential in diverse advanced photonic areas. Of significant importance is the on-demand regulation of the Ex-De luminescence behavior of these materials, which is previously unprecedented. In this study, we report on a platinum(II) complex-based phosphorescent soft salt S1 ([Pt(tpp)(ed)]+[Pt(ftpp)(CN)2]- (where ttp = 2-(4-(trifluoromethyl)phenyl)pyridine, ed = ethane-1,2-diamine, and ftpp = 2-(4-fluoro-3-(trifluoromethyl)phenyl)pyridine)) with Ex-De photoluminescence (PL) property. UV-visible absorption and PL spectra of S1 were recorded in DMSO-H2O mixture (1 × 10-3 M) with various H2O fractions to investigate its ground and excited states. Interestingly, the PL spectra of S1 powder show that its maximum emission peak is red-shifted from 595 to 644 nm upon excitation at different wavelengths from 360 to 520 nm, accompanied by an obvious emission color change from yellow-orange to red. Furthermore, confocal laser scanning fluorescence microscopy was employed to determine the PL property of self-assembled uniform S1 nanostructure, and the result shows that the Ex-De emission behavior is absent. On the basis of these results, we conclude the various Pt(II)···Pt(II) distances that exist are the major factor responsible for the properties of the Ex-De PL of S1 powder. Thus, for the first time, reversible on-off switching of Ex-De PL of S1 was achieved by manipulating its Pt(II)···Pt(II) distances through mechanical stress and vapor fuming. Finally, we demonstrate the high-level anticounterfeiting applications via on-demand multicolor displays.
Collapse
Affiliation(s)
- Jiangang Li
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, Jiangsu, P. R. China
| | - Kexin Chen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, Jiangsu, P. R. China
| | - Juan Wei
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, Jiangsu, P. R. China
| | - Yun Ma
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China.,Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China.,State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, Jiangsu, P. R. China
| | - Ruyi Zhou
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, Jiangsu, P. R. China
| | - Shujuan Liu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, Jiangsu, P. R. China
| | - Qiang Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, Jiangsu, P. R. China
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China.,Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| |
Collapse
|
8
|
Ricciardi L, La Deda M. Recent advances in cancer photo-theranostics: the synergistic combination of transition metal complexes and gold nanostructures. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04329-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AbstractIn this mini review, we highlight advances in the last five years in light-activated cancer theranostics by using hybrid systems consisting of transition metal complexes (TMCs) and plasmonic gold nanostructures (AuNPs). TMCs are molecules with attractive properties and high potential in biomedical application. Due to their antiproliferative abilities, platinum-based compounds are currently first-choice drugs for the treatment of several solid tumors. Moreover, ruthenium, iridium and platinum complexes are well-known for their ability to photogenerate singlet oxygen, a highly cytotoxic reactive species with a key role in photodynamic therapy. Their potential is further extended by the unique photophysical properties, which make TMCs particularly suitable for bioimaging. Recently, gold nanoparticles (AuNPs) have been widely investigated as one of the leading nanomaterials in cancer theranostics. AuNPs—being an inert and highly biocompatible material—represent excellent drug delivery systems, overcoming most of the side effects associated with the systemic administration of anticancer drugs. Furthermore, due to the thermoplasmonic properties, AuNPs proved to be efficient nano-sources of heat for photothermal therapy application. Therefore, the hybrid combination TMC/AuNPs could represent a synergistic merger of multiple functionalities for combinatorial cancer therapy strategies. Herein, we report the most recent examples of TMC/AuNPs systems in in-vitro in-vivo cancer tharanostics application whose effects are triggered by light-exposure in the Vis–NIR region, leading to a spatial and temporal control of the TMC/AuNPs activation for light-mediated precision therapeutics.
Collapse
|