1
|
Thalakottukara DD, Gandhi T. Engaging vinylene carbonate in ruthenium-catalyzed regioselective C-4 methylenation and C-8 formylmethylation of isoquinolinones. Chem Commun (Camb) 2024; 60:10358-10361. [PMID: 39211953 DOI: 10.1039/d4cc03466j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Herein, we disclose the first reports on the utilization of vinylene carbonate as a C1 methylene source in ruthenium-catalyzed additive controlled regioselective C4-methylenation and weak chelation-assisted C8-formylmethylation of isoquinolinones. Adopting vinylene carbonate as both a C2 and C1 synthon is an important highlight of this work. Amide carbonyl acts as the traceless directing group in C8-formylmethylation. Remarkably, in this reaction, two C-C bonds form in one-pot producing dimeric isoquinolinones by employing vinylene carbonate as a methylene surrogate in the presence of copper acetate as an additive. Importantly, unsymmetrical dimers were achievable, albeit in low yield. Extensive control experiments are conducted to decipher the reaction mechanism. It is evident from the mechanistic studies, that the formation of a formylmethyl group in situ at the C4-carbon undergoes dimerization, oxidation and subsequent decarboxylation to produce methylene-bridged isoquinolinone dimers. This protocol is scalable and compatible with a repertoire of substrates and shows high functional group tolerance. Harnessing vinylene carbonate as both a C2 and C1 synthon is an important highlight of this work.
Collapse
Affiliation(s)
- Dolly David Thalakottukara
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu-632014, India.
| | - Thirumanavelan Gandhi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu-632014, India.
| |
Collapse
|
2
|
Sachin, Sharma T, Chandra D, Sumit, Sharma U. Inherent directing group-enabled Co(III)-catalyzed C-H allylation/vinylation of isoquinolones. Chem Commun (Camb) 2024; 60:5626-5629. [PMID: 38715526 DOI: 10.1039/d4cc01146e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Co(III)-catalysed site-selective C8-allylation and vinylation of isoquinolones with allyl acetate and vinyl acetates has been accomplished. The oxo group of isoquinolone has been utilised as an inherent directing group. Based on preliminary mechanistic studies, a plausible mechanism for the developed reaction has also been delineated. Broad substrate scope with good to excellent yields and post-synthetic transformations of allylated and vinylated isoquinolines highlight the importance of the reaction.
Collapse
Affiliation(s)
- Sachin
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur 176061, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Tamanna Sharma
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur 176061, India.
| | - Devesh Chandra
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur 176061, India.
| | - Sumit
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur 176061, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Upendra Sharma
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur 176061, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Liu B, Zhou X, Liu Q, Yang Z, Mao Y, He Q, Zhang T, Kong X, Zhang J, Liao W, Tang L. Carbene-Catalyzed [4+2] Cycloaddition of Cyclobutenones and Isatins for Quick Access to Chiral Chlorine-Containing Spirocyclic δ-Lactones. J Org Chem 2024; 89:7286-7294. [PMID: 38696309 DOI: 10.1021/acs.joc.4c00295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Here we report a carbene-catalyzed enantio- and diastereoselective [4+2] cycloaddition reaction of cyclobutenones with isatins for the quick and efficient synthesis of spirocyclic δ-lactones bearing a chiral chlorine. A broad range of substrates with various substitution patterns proceed smoothly in this reaction, with the spirooxindole δ-lactone products afforded in generally good to excellent yields and optical purities under mild reaction conditions.
Collapse
Affiliation(s)
- Bin Liu
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Xian Zhou
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Qinqin Liu
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Zaihui Yang
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Yuanhu Mao
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Qing He
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Tianyuan Zhang
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Xiangkai Kong
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Jiquan Zhang
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Weike Liao
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Lei Tang
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
4
|
Jha N, Guo W, Kong WY, Tantillo DJ, Kapur M. Regiocontrol via Electronics: Insights into a Ru-Catalyzed, Cu-Mediated Site-Selective Alkylation of Isoquinolones via a C-C Bond Activation of Cyclopropanols. Chemistry 2023; 29:e202301551. [PMID: 37403766 DOI: 10.1002/chem.202301551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 07/06/2023]
Abstract
A site-selective C(3)/C(4)-alkylation of N-pyridylisoquinolones is achieved by employing C-C bond activation of cyclopropanols under Ru(II)-catalyzed/Cu(II)-mediated conditions. The regioisomeric ratios of the products follow directly from the electronic nature of the cyclopropanols and isoquinolones used, with electron-withdrawing groups yielding predominantly the C(3)-alkylated products, whereas the electron-donating groups primarily generate the C(4)-alkylated isomers. Density functional theory calculations and detailed mechanistic investigations suggest the simultaneous existence of the singlet and triplet pathways for the C(3)- and C(4)-product formation. Further transformations of the products evolve the utility of the methodology thereby yielding scaffolds of synthetic relevance.
Collapse
Affiliation(s)
- Neha Jha
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, MP, India
| | - Wentao Guo
- Department of Chemistry, University of California-Davis, Davis, California, 95616, USA
| | - Wang-Yeuk Kong
- Department of Chemistry, University of California-Davis, Davis, California, 95616, USA
| | - Dean J Tantillo
- Department of Chemistry, University of California-Davis, Davis, California, 95616, USA
| | - Manmohan Kapur
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, MP, India
| |
Collapse
|
5
|
Shao Y, Tian S, Zhu J, Tang S, Sun J. Diastereoselective formation of β-lactams via a three-component reaction. NEW J CHEM 2022. [DOI: 10.1039/d2nj01129h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly diastereoselective three-component reaction of N-hydroxyanilines, diazo compounds and cyclobutenones to form densely functionalized β-lactams has been realized.
Collapse
Affiliation(s)
- Ying Shao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Shijie Tian
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jie Zhu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Shengbiao Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
6
|
Xie X, Sun J. [4+3]-Cycloaddition Reaction of Sulfilimines with Cyclobutenones: Access to Benzazepinones. Org Lett 2021; 23:8921-8925. [PMID: 34723560 DOI: 10.1021/acs.orglett.1c03413] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A catalyst-free [4+3]-cycloaddition reaction of N-aryl sulfilimines with cyclobutenones is described, which provides a straightforward protocol for synthesizing 1,5-dihydro-2H-benzo[b]azepin-2-ones under mild reaction conditions. This reaction features a broad substrate scope and good functional group tolerance and does not require catalysts or additives. Moreover, using N-pyridinyl sulfilimine as the substrate, a series of pyridoazepinones have also been prepared.
Collapse
Affiliation(s)
- Xiaozhou Xie
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
7
|
Chandra D, Kumar N, Sumit, Parmar D, Gupta P, Sharma U. Co(III)-catalysed regioselective linear C(8)-H olefination of isoquinolone with terminal aromatic and aliphatic alkynes. Chem Commun (Camb) 2021; 57:11613-11616. [PMID: 34636826 DOI: 10.1039/d1cc04541e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A regioselective C8 linear olefination of isoquinoline-1H-2-one with terminal (aromatic and aliphatic) alkynes is reported under Co(III) catalysis. This is an exclusive report on the C8 functionalization of isoquinolone using non-noble transition metal complexes. Experimental and computational mechanistic studies have also been performed to depict the reaction pathway.
Collapse
Affiliation(s)
- Devesh Chandra
- Chemical Technology Division, CSIR-IHBT, Palampur, HP 176 061, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Nikunj Kumar
- Computational Catalysis Center, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Sumit
- Chemical Technology Division, CSIR-IHBT, Palampur, HP 176 061, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Diksha Parmar
- Chemical Technology Division, CSIR-IHBT, Palampur, HP 176 061, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Puneet Gupta
- Computational Catalysis Center, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Upendra Sharma
- Chemical Technology Division, CSIR-IHBT, Palampur, HP 176 061, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
8
|
Sivaraj C, Gandhi T. Alternative and Uncommon Acylating Agents - An Alive and Kicking Methodology. Chem Asian J 2021; 16:2773-2794. [PMID: 34331736 DOI: 10.1002/asia.202100691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/27/2021] [Indexed: 12/16/2022]
Abstract
Functionalizing and derivatising organic molecules is a centerpiece in organic synthesis. Succinctly manipulating and installing acyl moieties in organic molecules spurred the interest of chemists owing to its occurrence in natural products, bioactive molecules, pharmaceuticals, and advanced materials. Traditionally, access to acylation reaction was achieved by Friedel-Crafts reaction, Schotten-Baumann, and Vilsmeier-Haack acylation, however, these protocols own pitfalls. Further to make the acylation process attractive and environmentally friendly, toluene, aldehydes, alcohols, α-keto acids, amines, amides, esters, ethers, nitriles, alkynes, alkenes, ketenes, N-acylbenzotriazoles, ketones, thioacids, oximes, thiazolium carbinols, PIDA, diacyl disulfides and acyl salts were used as an acyl surrogates/reagents. Amusingly, these acylating reagents are considered uncommon and alternative to carboxylic acids, acid chlorides and acetic anhydrides. This short review aims to encompass the usage of acylating agents in transition-metal, metal-free, light-driven and other demanding conditions, and thus reveals their practicality.
Collapse
Affiliation(s)
- Chandrasekaran Sivaraj
- Chandrasekaran Sivaraj and Thirumanavelan Gandhi, Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Thirumanavelan Gandhi
- Chandrasekaran Sivaraj and Thirumanavelan Gandhi, Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| |
Collapse
|
9
|
Wu J, Qian B, Lu L, Yang H, Shang Y, Zhang J. Access to the C2 C–H olefination, alkylation and deuteration of indoles by rhodium( iii) catalysis: an opportunity for diverse syntheses. Org Chem Front 2021. [DOI: 10.1039/d1qo00133g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A concise approach for a diversity-oriented synthesis via regioselective C2 C–H olefination, alkylation, and deuteration of indoles by Rh(iii) catalysis is described.
Collapse
Affiliation(s)
- Jiaping Wu
- Key Laboratory of Functional Molecular Solids (Ministry of Education)
- Anhui Key Laboratory of Molecular Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241002
| | - Baiyang Qian
- Key Laboratory of Functional Molecular Solids (Ministry of Education)
- Anhui Key Laboratory of Molecular Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241002
| | - Lili Lu
- Key Laboratory of Functional Molecular Solids (Ministry of Education)
- Anhui Key Laboratory of Molecular Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241002
| | - Haitao Yang
- Key Laboratory of Functional Molecular Solids (Ministry of Education)
- Anhui Key Laboratory of Molecular Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241002
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids (Ministry of Education)
- Anhui Key Laboratory of Molecular Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241002
| | - Jitan Zhang
- Key Laboratory of Functional Molecular Solids (Ministry of Education)
- Anhui Key Laboratory of Molecular Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241002
| |
Collapse
|
10
|
Zhang Y, Li X, Bai J, Huang Z, Yin M, Sheng J, Song Y. Rh( iii)-Catalyzed C–H allylation/annulative Markovnikov addition with 5-methylene-1,3-dioxan-2-one: formation of isoquinolinones containing a C3 quaternary centre. Org Chem Front 2021. [DOI: 10.1039/d1qo01232k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Rh(iii)-Catalyzed C–H allylation/annulative Markovnikov addition reaction was disclosed, offering isoquinolinones containing a C3 quaternary centre. By using this method as the key step, the US28 inverse agonist analogs were synthesized.
Collapse
Affiliation(s)
- Yuanfei Zhang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Xinghua Li
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
| | - Jintong Bai
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
| | - Zhaoyu Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
| | - Minhai Yin
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
| | - Jiarong Sheng
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
| | - Ying Song
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| |
Collapse
|
11
|
Kumar P, Nagtilak PJ, Kapur M. Transition metal-catalyzed C–H functionalizations of indoles. NEW J CHEM 2021. [DOI: 10.1039/d1nj01696b] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review summarises a wide range of transformations on the indole skeleton, including arylation, alkenylation, alkynylation, acylation, nitration, borylation, and amidation, using transition-metal catalyzed C–H functionalization as the key step.
Collapse
Affiliation(s)
- Pravin Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| | - Prajyot Jayadev Nagtilak
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| | - Manmohan Kapur
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| |
Collapse
|