1
|
Klebes A, Ates HC, Verboket RD, Urban GA, von Stetten F, Dincer C, Früh SM. Emerging multianalyte biosensors for the simultaneous detection of protein and nucleic acid biomarkers. Biosens Bioelectron 2024; 244:115800. [PMID: 37925943 DOI: 10.1016/j.bios.2023.115800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/17/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
Traditionally, biosensors are designed to detect one specific analyte. Nevertheless, disease progression is regulated in a highly interactive way by different classes of biomolecules like proteins and nucleic acids. Therefore, a more comprehensive analysis of biomarkers from a single sample is of utmost importance to further improve both, the accuracy of diagnosis as well as the therapeutic success. This review summarizes fundamentals like biorecognition and sensing strategies for the simultaneous detection of proteins and nucleic acids and discusses challenges related to multianalyte biosensor development. We present an overview of the current state of biosensors for the combined detection of protein and nucleic acid biomarkers associated with widespread diseases, among them cancer and infectious diseases. Furthermore, we outline the multianalyte analysis in the rapidly evolving field of single-cell multiomics, to stress its significance for the future discovery and validation of biomarkers. Finally, we provide a critical perspective on the performance and translation potential of multianalyte biosensors for medical diagnostics.
Collapse
Affiliation(s)
- Anna Klebes
- Hahn-Schickard, 79110, Freiburg, Germany; University of Freiburg, IMTEK - Department of Microsystems Engineering, Laboratory for MEMS Applications, 79110, Freiburg, Germany
| | - H Ceren Ates
- University of Freiburg, IMTEK - Department of Microsystems Engineering, Disposable Microsystems Group, 79110, Freiburg, Germany; University of Freiburg, FIT Freiburg Centre for Interactive Materials and Bioinspired Technology, 79110, Freiburg, Germany
| | - René D Verboket
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Johann Wolfgang Goethe University, 60590, Frankfurt am Main, Germany
| | - Gerald A Urban
- University of Freiburg, IMTEK - Department of Microsystems Engineering, Laboratory for Sensors, 79110, Freiburg, Germany; University of Freiburg, Freiburg Materials Research Centre - FMF, 79104, Freiburg, Germany
| | - Felix von Stetten
- Hahn-Schickard, 79110, Freiburg, Germany; University of Freiburg, IMTEK - Department of Microsystems Engineering, Laboratory for MEMS Applications, 79110, Freiburg, Germany
| | - Can Dincer
- University of Freiburg, IMTEK - Department of Microsystems Engineering, Disposable Microsystems Group, 79110, Freiburg, Germany; University of Freiburg, FIT Freiburg Centre for Interactive Materials and Bioinspired Technology, 79110, Freiburg, Germany
| | - Susanna M Früh
- Hahn-Schickard, 79110, Freiburg, Germany; University of Freiburg, IMTEK - Department of Microsystems Engineering, Laboratory for MEMS Applications, 79110, Freiburg, Germany
| |
Collapse
|
2
|
Lin Q, Zhang J, Liu L, Kong J, Fang X. Simultaneous Rapid Nucleic Acid and Protein Detection in a Lateral Chromatography Chip for COVID-19 Diagnosis. ACS OMEGA 2022; 7:38409-38416. [PMID: 36340144 PMCID: PMC9631717 DOI: 10.1021/acsomega.2c03499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/16/2022] [Indexed: 06/16/2023]
Abstract
In this work, we report a fast, portable, and economical microfluidic platform for the simultaneous detection of nucleic acid and proteins. Using SARS-CoV-2 as a target, this microfluidic chip enabled to simultaneously detect the SARS-CoV-2 RNA (N gene) antigen (or specific IgG antibody) with respective detection limits of 1 copy/μL for nucleic acid, 0.85 ng/mL for antigen, and 5.80 ng/mL for IgG within 30 min with high stability and anti-interference ability. The capability of this system in clinical applications was further evaluated using clinical samples, displaying 100% sensitivity and 100% specificity for COVID-19 diagnosis. These findings demonstrate the potential of this method to be used for the detection and subsequent control of pathogens.
Collapse
Affiliation(s)
- Qiuyuan Lin
- Department
of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, P. R. China
| | - Jin Zhang
- Qingdao
International Travel Healthcare Center, Qingdao Customs, Qingdao 266071, P. R. China
| | - Liling Liu
- Shanghai
Suxin Biotechnology Co. Ltd., and IgeneTec Diagnostic Products Co.
Ltd., Shanghai 201318, P. R. China
| | - Jilie Kong
- Department
of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, P. R. China
| | - Xueen Fang
- Department
of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
3
|
Chavez‐Pineda OG, Rodriguez‐Moncayo R, Cedillo‐Alcantar DF, Guevara‐Pantoja PE, Amador‐Hernandez JU, Garcia‐Cordero JL. Microfluidic systems for the analysis of blood‐derived molecular biomarkers. Electrophoresis 2022; 43:1667-1700. [DOI: 10.1002/elps.202200067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 12/19/2022]
Affiliation(s)
- Oriana G. Chavez‐Pineda
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB) Centro de Investigación y de Estudios Avanzados (Cinvestav) Monterrey Nuevo León Mexico
| | - Roberto Rodriguez‐Moncayo
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB) Centro de Investigación y de Estudios Avanzados (Cinvestav) Monterrey Nuevo León Mexico
| | - Diana F. Cedillo‐Alcantar
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB) Centro de Investigación y de Estudios Avanzados (Cinvestav) Monterrey Nuevo León Mexico
| | - Pablo E. Guevara‐Pantoja
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB) Centro de Investigación y de Estudios Avanzados (Cinvestav) Monterrey Nuevo León Mexico
| | - Josue U. Amador‐Hernandez
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB) Centro de Investigación y de Estudios Avanzados (Cinvestav) Monterrey Nuevo León Mexico
| | - Jose L. Garcia‐Cordero
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB) Centro de Investigación y de Estudios Avanzados (Cinvestav) Monterrey Nuevo León Mexico
- Roche Institute for Translational Bioengineering (ITB) Roche Pharma Research and Early Development, Roche Innovation Center Basel Basel Switzerland
| |
Collapse
|
4
|
Wang Y, Feng H, Huang K, Quan J, Yu F, Liu X, Jiang H, Wang X. Target-triggered hybridization chain reaction for ultrasensitive dual-signal miRNA detection. Biosens Bioelectron 2022; 215:114572. [PMID: 35853324 DOI: 10.1016/j.bios.2022.114572] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/29/2022] [Accepted: 07/10/2022] [Indexed: 12/12/2022]
Abstract
A signal amplification sensing system with target-triggered DNA cascade reaction combined with dual-signal readout technology was designed for ultrasensitive analysis of miRNA. The highly conductive metal organic frameworks (MOFs) derivative, N-doped carbon dodecahedron (N-PCD) was deposited with gold nanoparticles as the electrode substrate, which could assist the electron transfer between the molecular probe and the electrode surface, and could remarkably enhance electrochemical response. Tetrahedral DNA nanostructure (T4-DNA) with high structural stability and mechanical stiffness was designed to improve the loading capacity and binding efficiency of the target, thus increasing the sensitivity of the system. The non-enzymatic amplification method based on the DNA cascade reaction allows the electrochemical responses from dual signal DNA probes labeled with ferrocene (Fc) and methylene blue (MB), respectively in turn to improve the reliability of detection. Under optimal conditions, the sensor has a linear range of 5-1.0 × 104 fM, and the limit of detection is as low as 1.92 fM and 3.74 fM for Fc and MB labeled probe, respectively. This strategy raises the promising application for the rapid detection of miRNA targets with low abundance in complex biological systems.
Collapse
Affiliation(s)
- Yihan Wang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Huan Feng
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Ke Huang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jinfeng Quan
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Fangfang Yu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xiaohui Liu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Hui Jiang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
5
|
Abstract
Thrombin facilitates the aggregation of platelet in hemostatic processes and participates in the regulation of cell signaling. Therefore, the development of thrombin sensors is conducive to comprehending the role of thrombin in the course of a disease. Biosensors based on aptamers screened by SELEX have exhibited superiority for thrombin detection. In this review, we summarized the aptamer-based sensors for thrombin detection which rely on the specific recognitions between thrombin and aptamer. Meanwhile, the unique advantages of different sensors including optical and electrochemical sensors were also highlighted. Especially, these sensors based on electrochemistry have the potential to be miniaturized, and thus have gained comprehensive attention. Furthermore, concerns about aptamer-based sensors for thrombin detection, prospects of the future and promising avenues in this field were also presented.
Collapse
|
6
|
Khajouei S, Hosseinzadeh E, Ravan H, Mohammadi A. Binary detection of protein and nucleic acid enabled cancer diagnosis through branched hybridization chain reaction. Anal Chim Acta 2022; 1205:339755. [DOI: 10.1016/j.aca.2022.339755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022]
|
7
|
Sun C, Xiao F, Fu J, Huang X, Jia N, Xu Z, Wang Y, Cui X. Loop-Mediated Isothermal Amplification Coupled With Nanoparticle-Based Lateral Biosensor for Rapid, Sensitive, and Specific Detection of Bordetella pertussis. Front Bioeng Biotechnol 2022; 9:797957. [PMID: 35211469 PMCID: PMC8861531 DOI: 10.3389/fbioe.2021.797957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/23/2021] [Indexed: 11/23/2022] Open
Abstract
Bordetella pertussis is the most frequent causative agent for pertussis, which is a highly contagious disease. Here, we developed a method based on loop-mediated isothermal amplification (LAMP) and nanoparticle-based lateral flow biosensor (LFB) for the timely diagnosis of B. pertussis infections. A set of six primers was designed for LAMP reactions, and the LAMP results were rapidly and visually indicated using LFB. The recommended condition for the B. pertussis LAMP reactions is 40 min at 66°C. Our results confirmed that the LAMP-LFB assay could specifically detect B. pertussis and did not cross-react with non-B. pertussis isolates. The sensitivity of the B. pertussis LAMP-LFB assay was 50 fg per reaction. In particular, 108 nasopharyngeal swab (NPS) samples were collected to evaluate the B. pertussis LAMP-LFB assay, and the results were compared with those of the quantitative PCR (qPCR) method. The positive rates of B. pertussis LAMP-LFB and qPCR were 40.7% and 38.8%, respectively, and the agreement between the LAMP-LFB and qPCR results was 98%, with a kappa value of 0.96. The whole process of LAMP-LFB can be completed within 1 h, which is much shorter than that of qPCR, including about 15 min of rapid DNA extraction, 40 min of LAMP reaction, and within 2 min of the LFB test. Collectively, the B. pertussis LAMP-LFB assay developed in this report offers a new option for the rapid, reliable, and simple diagnosis of B. pertussis infections.
Collapse
Affiliation(s)
- Chunrong Sun
- Experiment Center, Captital Institute of Pediatrics, Beijing, China
| | - Fei Xiao
- Experiment Center, Captital Institute of Pediatrics, Beijing, China
| | - Jin Fu
- Experiment Center, Captital Institute of Pediatrics, Beijing, China
| | - Xiaolan Huang
- Experiment Center, Captital Institute of Pediatrics, Beijing, China
| | - Nan Jia
- Experiment Center, Captital Institute of Pediatrics, Beijing, China
| | - Zheng Xu
- Experiment Center, Captital Institute of Pediatrics, Beijing, China
| | - Yi Wang
- Experiment Center, Captital Institute of Pediatrics, Beijing, China
| | - Xiaodai Cui
- Experiment Center, Captital Institute of Pediatrics, Beijing, China
| |
Collapse
|