1
|
Saha R, Hembram BC, Panda S, Ghosh R, Bagh B. Iron-Catalyzed sp 3 C-H Alkylation of Fluorene with Primary and Secondary Alcohols: A Borrowing Hydrogen Approach. J Org Chem 2024. [PMID: 39175426 DOI: 10.1021/acs.joc.4c00819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The utilization of earth-abundant, cheap, and nontoxic transition metals in important catalytic transformations is essential for sustainable development, and iron has gained significant attention as the most abundant transition metal. A mixture of FeCl2 (3 mol %), phenanthroline (6 mol %), and KOtBu (0.4 eqivalent) was used as an effective catalyst for the sp3 C-H alkylation of fluorene using alcohol as a nonhazardous alkylating partner, and eco-friendly water was formed as the only byproduct. The substrate scope includes a wide range of substituted fluorenes and substituted benzyl alcohols. The reaction is equally effective with challenging secondary alcohols and unactivated aliphatic alcohols. Selective mono-C9-alkylation of fluorenes with alcohols yielded the corresponding products in good isolated yields. Various postfunctionalizations of C-9 alkylated fluorene products were performed to establish the practical utility of this catalytic alkylation. Control experiments suggested a homogeneous reaction path involving borrowing hydrogen mechanism with the formation and subsequent reduction of 9-alkylidene fluorene intermediate.
Collapse
Affiliation(s)
- Ratnakar Saha
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, PIN 752050, India
| | - Bhairab Chand Hembram
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, PIN 752050, India
| | - Surajit Panda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, PIN 752050, India
| | - Rahul Ghosh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, PIN 752050, India
| | - Bidraha Bagh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, PIN 752050, India
| |
Collapse
|
2
|
Saha R, Hembram BC, Panda S, Jana NC, Bagh B. Iron- and base-catalyzed C(α)-alkylation and one-pot sequential alkylation-hydroxylation of oxindoles with secondary alcohols. Org Biomol Chem 2024; 22:6321-6330. [PMID: 39039931 DOI: 10.1039/d4ob00957f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The utilization of economical and environmentally benign transition metals in crucial catalytic processes is pivotal for sustainable advancement in synthetic organic chemistry. Iron, as the most abundant transition metal in the Earth's crust, has gained significant attention for this purpose. A combination of FeCl2 (5 mol%) in the presence of phenanthroline (10 mol%) and NaOtBu (1.5 equivalent) proved effective for the C(α)-alkylation of oxindole, employing challenging secondary alcohol as a non-hazardous alkylating agent. The C(α)-alkylation of oxindole was optimized in green solvent or under neat conditions. The substrate scope encompasses a broad array of substituted oxindoles with various secondary alcohols. Further post-functionalization of the C(α)-alkylated oxindole products demonstrated the practical utility of this catalytic alkylation. One-pot C-H hydroxylation of alkylated oxindoles yielded 3-alkyl-3-hydroxy-2-oxindoles using air as the most sustainable oxidant. Low E-factors (3.61 to 4.19) and good Eco-scale scores (74 to 76) of these sustainable catalytic protocols for the alkylation and one-pot sequential alkylation-hydroxylation of oxindoles demonstrated minimum waste generation. Plausible catalytic paths are proposed on the basis of past reports and control experiments, which suggested that a borrowing hydrogen pathway is involved in this alkylation.
Collapse
Affiliation(s)
- Ratnakar Saha
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha, PIN 752050, India.
| | - Bhairab Chand Hembram
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha, PIN 752050, India.
| | - Surajit Panda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha, PIN 752050, India.
| | - Narayan Ch Jana
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha, PIN 752050, India.
| | - Bidraha Bagh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha, PIN 752050, India.
| |
Collapse
|
3
|
Xia Q, Miao Y, Hu Y, Xie Y, Luo J. Copper-Catalyzed Borrowing Hydrogen Reaction for α-Alkylation of Amides with Alcohols. J Org Chem 2024; 89:9654-9660. [PMID: 38900965 DOI: 10.1021/acs.joc.4c00404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
We report the first example of copper-catalyzed α-alkylation of acetamides with alcohols via a borrowing hydrogen strategy. Catalyzed by the in situ-generated copper particles, acetamides and various substituted benzyl or alkyl alcohols were transformed into functionalized amides in good yields with excellent selectivity. Compared with previous work, this process is simple using commercially available Cu(OAc)2 as a precatalyst, without an additional ligand or a metal complex, and easier. Mechanistic studies revealed that aldehyde and α,β-unsaturated amides were the intermediates of this reaction and also disclosed the role of copper in alcohol dehydrogenation and C═C bond hydrogenation.
Collapse
Affiliation(s)
- Qiuling Xia
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering of the Chinese Academy of Sciences (CAS), Ningbo 315201, P. R. China
| | - Yulong Miao
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering of the Chinese Academy of Sciences (CAS), Ningbo 315201, P. R. China
| | - Yue Hu
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering of the Chinese Academy of Sciences (CAS), Ningbo 315201, P. R. China
| | - Yinjun Xie
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering of the Chinese Academy of Sciences (CAS), Ningbo 315201, P. R. China
| | - Junfei Luo
- Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China
| |
Collapse
|
4
|
Song P, Rong H, Meng T, Cui Z, Mao M, Yang C. Quinoline-derived NNP-manganese complex catalyzed α-alkylation of ketones with primary alcohols. Org Biomol Chem 2024; 22:5112-5116. [PMID: 38864433 DOI: 10.1039/d4ob00827h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
An air-stable quinoline-derived NNP ligand chelated Mn catalyst was developed for the efficient α-alkylation of ketones with primary alcohols via a hydrogen auto-transfer methodology. The sole by-product formed is water, rendering the protocol atom efficient. A wide range of ketone and alcohol substrates were employed, providing the α-alkylated ketones with isolated yields up to 94%. This system was also efficient for the green synthesis of quinoline derivatives while using (2-aminophenyl)methanol as an alkylating reagent.
Collapse
Affiliation(s)
- Peidong Song
- Xi'an Modern Chemistry Research Institute, Xi'an 710065, China.
| | - Haojie Rong
- Xi'an Modern Chemistry Research Institute, Xi'an 710065, China.
| | - Tingting Meng
- Xi'an Modern Chemistry Research Institute, Xi'an 710065, China.
| | - Zhe Cui
- Xi'an Modern Chemistry Research Institute, Xi'an 710065, China.
| | - Mingzhen Mao
- Xi'an Modern Chemistry Research Institute, Xi'an 710065, China.
| | - Cuifeng Yang
- Xi'an Modern Chemistry Research Institute, Xi'an 710065, China.
| |
Collapse
|
5
|
Saha R, Panda S, Nanda A, Bagh B. Nickel-Catalyzed α-Alkylation of Arylacetonitriles with Challenging Secondary Alcohols. J Org Chem 2024; 89:6664-6676. [PMID: 36595479 DOI: 10.1021/acs.joc.2c02026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Nickel(II) complex 1 was utilized as a sustainable catalyst for α-alkylation of arylacetonitriles with challenging secondary alcohols. Arylacetonitriles with a wide range of functional groups were tolerated, and various cyclic and acyclic secondary alcohols were utilized to yield a large number of α-alkylated products. The plausible mechanism involves the base-promoted activation of precatalyst 1 to an active catalyst 2 (dehydrochlorinated product) which activates the O-H and C-H bonds of the secondary alcohol in a dehydrogenative pathway.
Collapse
Affiliation(s)
- Ratnakar Saha
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Surajit Panda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Amareshwar Nanda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Bidraha Bagh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| |
Collapse
|
6
|
Cook A, Newman SG. Alcohols as Substrates in Transition-Metal-Catalyzed Arylation, Alkylation, and Related Reactions. Chem Rev 2024; 124:6078-6144. [PMID: 38630862 DOI: 10.1021/acs.chemrev.4c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Alcohols are abundant and attractive feedstock molecules for organic synthesis. Many methods for their functionalization require them to first be converted into a more activated derivative, while recent years have seen a vast increase in the number of complexity-building transformations that directly harness unprotected alcohols. This Review discusses how transition metal catalysis can be used toward this goal. These transformations are broadly classified into three categories. Deoxygenative functionalizations, representing derivatization of the C-O bond, enable the alcohol to act as a leaving group toward the formation of new C-C bonds. Etherifications, characterized by derivatization of the O-H bond, represent classical reactivity that has been modernized to include mild reaction conditions, diverse reaction partners, and high selectivities. Lastly, chain functionalization reactions are described, wherein the alcohol group acts as a mediator in formal C-H functionalization reactions of the alkyl backbone. Each of these three classes of transformation will be discussed in context of intermolecular arylation, alkylation, and related reactions, illustrating how catalysis can enable alcohols to be directly harnessed for organic synthesis.
Collapse
Affiliation(s)
- Adam Cook
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Stephen G Newman
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
7
|
Bieniek JC, Mashtakov B, Schollmeyer D, Waldvogel SR. Dehydrogenative Electrochemical Synthesis of N-Aryl-3,4-Dihydroquinolin-2-ones by Iodine(III)-Mediated Coupling Reaction. Chemistry 2024; 30:e202303388. [PMID: 38018461 DOI: 10.1002/chem.202303388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/12/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023]
Abstract
Electrochemically generated hypervalent iodine(III) species are powerful reagents for oxidative C-N coupling reactions, providing access to valuable N-heterocycles. A new electrocatalytic hypervalent iodine(III)-mediated in-cell synthesis of 1H-N-aryl-3,4-dihydroquinolin-2-ones by dehydrogenative C-N bond formation is presented. Catalytic amounts of the redox mediator, a low supporting electrolyte concentration and recycling of the solvent used make this method a sustainable alternative to electrochemical ex-cell or conventional approaches. Furthermore, inexpensive, readily available electrode materials and a simple galvanostatic set-up are applied. The broad functional group tolerance could be demonstrated by synthesizing 23 examples in yields up to 96 %, with one reaction being performed on a 10-fold higher scale. Based on the obtained results a sound reaction mechanism could be proposed.
Collapse
Affiliation(s)
- Jessica C Bieniek
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Boris Mashtakov
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Dieter Schollmeyer
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Kaiserstraße 12, 76131, Karlsruhe, Germany
- Max-Planck-Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
8
|
Bera A, Ghosh A, Banerjee D. Nickel-Catalyzed Alkylation of Oxindoles with Secondary Alcohols. J Org Chem 2023. [PMID: 37161856 DOI: 10.1021/acs.joc.3c00402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Herein, we have demonstrated a simple nickel-catalyzed C-3-selective alkylation of 2-oxindoles using a wide variety of secondary alkyl alcohols. As a special highlight, functionalization of the cholesterol derivative was reported. Control experiments, initial mechanistic studies, and deuterium-labeling experiments were performed for the alkylation process.
Collapse
Affiliation(s)
- Atanu Bera
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Adrija Ghosh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Debasis Banerjee
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
9
|
Yu H, Fu K, Yang G, Liu M, Yang P, Liu T. Divergent upgrading pathways of sulfones with primary alcohols: nickel-catalyzed α-alkylation under N 2 and metal-free promoted β-olefination in open air. Chem Commun (Camb) 2023; 59:615-618. [PMID: 36533586 DOI: 10.1039/d2cc05882k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report here our findings on the diverse reaction results of sulfones and alcohols. In the presence of NiCl2/P(t-Bu)3 and under a N2 atmosphere, α-C-alkylation of sulfones with alcohols occurs through a borrowing-hydrogen mechanism; when the reaction was carried out in the open air without nickel, the product was not the predicted α,β-unsaturated sulfone, but the β-alkenyl sulfone, which is a useful building block in organic synthesis.
Collapse
Affiliation(s)
- Haiping Yu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Kaiyue Fu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Guang Yang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Mengyu Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Peng Yang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, P. R. China. .,State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Tao Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, P. R. China.
| |
Collapse
|
10
|
Yang X, Tian X, Sun N, Hu B, Shen Z, Hu X, Jin L. Geometry-Constrained N, N, O-Nickel Catalyzed α-Alkylation of Unactivated Amides via a Borrowing Hydrogen Strategy. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Xue Yang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Xiaoyu Tian
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Nan Sun
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Baoxiang Hu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Zhenlu Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Xinquan Hu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Liqun Jin
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, The Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
11
|
Muzart J. A Journey from June 2018 to October 2021 with N, N-Dimethylformamide and N, N-Dimethylacetamide as Reactants. Molecules 2021; 26:6374. [PMID: 34770783 PMCID: PMC8587108 DOI: 10.3390/molecules26216374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 02/01/2023] Open
Abstract
A rich array of reactions occur using N,N-dimethylformamide (DMF) or N,N-dimethylacetamide (DMAc) as reactants, these two amides being able to deliver their own H, C, N, and O atoms for the synthesis of a variety of compounds. This account highlights the literature published since June 2018, completing previous reviews by the author.
Collapse
Affiliation(s)
- Jacques Muzart
- Institut de Chimie Moléculaire de Reims, CNRS-Université de Reims Champagne-Ardenne, B.P. 1039, CEDEX 2, 51687 Reims, France
| |
Collapse
|
12
|
Reed-Berendt B, Latham DE, Dambatta MB, Morrill LC. Borrowing Hydrogen for Organic Synthesis. ACS CENTRAL SCIENCE 2021; 7:570-585. [PMID: 34056087 PMCID: PMC8155478 DOI: 10.1021/acscentsci.1c00125] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Indexed: 05/03/2023]
Abstract
Borrowing hydrogen is a process that is used to diversify the synthetic utility of commodity alcohols. A catalyst first oxidizes an alcohol by removing hydrogen to form a reactive carbonyl compound. This intermediate can undergo a diverse range of subsequent transformations before the catalyst returns the "borrowed" hydrogen to liberate the product and regenerate the catalyst. In this way, alcohols may be used as alkylating agents whereby the sole byproduct of this one-pot reaction is water. In recent decades, significant advances have been made in this area, demonstrating many effective methods to access valuable products. This outlook highlights the diversity of metal and biocatalysts that are available for this approach, as well as the various transformations that can be performed, focusing on a selection of the most significant and recent advances. By succinctly describing and conveying the versatility of borrowing hydrogen chemistry, we anticipate its uptake will increase across a wider scientific audience, expanding opportunities for further development.
Collapse
|
13
|
Li WZ, Wang ZX. Nickel-catalyzed coupling of R 2P(O)Me (R = aryl or alkoxy) with (hetero)arylmethyl alcohols. Org Biomol Chem 2021; 19:2233-2242. [PMID: 33616130 DOI: 10.1039/d1ob00086a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
α-Alkylation of methyldiarylphosphine oxides with (hetero)arylmethyl alcohols was performed under nickel catalysis. Various arylmethyl and heteroarylmethyl alcohols can be used in this transformation. A series of methyldiarylphosphine oxides were alkylated with 30-90% yields. Functional groups on the aromatic rings of methyldiarylphosphine oxides or arylmethyl alcohols including OMe, NMe2, SMe, CF3, Cl, and F groups can be tolerated. The conditions are also suitable for the α-alkylation reaction of dialkyl methylphosphonates.
Collapse
Affiliation(s)
- Wei-Ze Li
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Zhong-Xia Wang
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China. and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| |
Collapse
|
14
|
Hu M, Jiang Y, Sun N, Hu B, Shen Z, Hu X, Jin L. Nickel-catalyzed C3-alkylation of indoles with alcohols via a borrowing hydrogen strategy. NEW J CHEM 2021. [DOI: 10.1039/d1nj01581h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
An efficient Ni-catalyzed C3-alkylation of indoles with alcohols via a borrowing hydrogen pathway was achieved utilizing an N,O-donor coordinated nickel complex as the precatalyst.
Collapse
Affiliation(s)
- Miao Hu
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310032
- P. R. China
| | - Yong Jiang
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310032
- P. R. China
| | - Nan Sun
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310032
- P. R. China
| | - Baoxiang Hu
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310032
- P. R. China
| | - Zhenlu Shen
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310032
- P. R. China
| | - Xinquan Hu
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310032
- P. R. China
| | - Liqun Jin
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310032
- P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
| |
Collapse
|