1
|
Xiao P, Wang Y, Wang L, Toyoda H, Nakamura K, Bekhti S, Lu Y, Huang J, Gies H, Yokoi T. Understanding the effect of spatially separated Cu and acid sites in zeolite catalysts on oxidation of methane. Nat Commun 2024; 15:2718. [PMID: 38548724 PMCID: PMC10978981 DOI: 10.1038/s41467-024-46924-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/12/2024] [Indexed: 04/01/2024] Open
Abstract
Unraveling the effect of spatially separated bifunctional sites on catalytic reactions is significant yet challenging. In this report, we investigate the role of spatial separation on the oxidation of methane in a series of Cu-exchanged aluminosilicate zeolites. Regulation of the bifunctional sites is done either through studying a physical mixture of Cu-exchanged zeolites and acidic zeolites or by systematically varying the Cu and acid density within a family of zeolite materials. We show that separated Cu and acid sites are beneficial for the formation of hydrocarbons while high-density Cu sites, which are closer together, facilitate the production of CO2. By contrast, a balance of the spatial separation of Cu and acid sites shows more favorable formation of methanol. This work will further guide approaches to methane oxidation to methanol and open an avenue for promoting hydrocarbon synthesis using methanol as an intermediate.
Collapse
Affiliation(s)
- Peipei Xiao
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan
| | - Yong Wang
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan
| | - Lizhuo Wang
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Hiroto Toyoda
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan
| | - Kengo Nakamura
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan
| | - Samya Bekhti
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan
| | - Yao Lu
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan
| | - Jun Huang
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Hermann Gies
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan
- Institute of Geology, Mineralogy und Geophysics, Ruhr-University Bochum, Bochum, 44780, Germany
| | - Toshiyuki Yokoi
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan.
- iPEACE223 Inc. Konwa Building, 1-12-22 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
2
|
Zhang H, Guo J, Cao Y. Continuous selective conversion of methane to methanol over a Cu-KFI zeolite catalyst using a water-O 2 mixture as the oxygen source. Chem Commun (Camb) 2023; 60:228-231. [PMID: 38051661 DOI: 10.1039/d3cc05379b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The continuous catalytic oxidation of methane to methanol on a Cu-KFI zeolite using water-O2 mixture as the oxidant is reported. A high methanol space-time yield of 880.3 mmol molCu-1 h-1 with 83% selectivity is achieved at 450 °C. Isotopic labelling experiments show that both H2O and O2 provide the oxygen source in this catalytic methane-to-methanol conversion reaction.
Collapse
Affiliation(s)
- Hailong Zhang
- College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610064, PR China
| | - Jiaxiu Guo
- College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610064, PR China
| | - Yi Cao
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, PR China
| |
Collapse
|
3
|
Zhang H, Han P, Wu D, Du C, Zhao J, Zhang KHL, Lin J, Wan S, Huang J, Wang S, Xiong H, Wang Y. Confined Cu-OH single sites in SSZ-13 zeolite for the direct oxidation of methane to methanol. Nat Commun 2023; 14:7705. [PMID: 38001068 PMCID: PMC10673993 DOI: 10.1038/s41467-023-43508-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
The direct oxidation of methane to methanol (MTM) remains a significant challenge in heterogeneous catalysis due to the high dissociation energy of the C-H bond in methane and the high desorption energy of methanol. In this work, we demonstrate a breakthrough in selective MTM by achieving a high methanol space-time yield of 2678 mmol molCu-1 h-1 with 93% selectivity in a continuous methane-steam reaction at 400 °C. The superior performance is attributed to the confinement effect of 6-membered ring (6MR) voids in SSZ-13 zeolite, which host isolated Cu-OH single sites. Our results provide a deeper understanding of the role of Cu-zeolites in continuous methane-steam to methanol conversion and pave the way for further improvement.
Collapse
Affiliation(s)
- Hailong Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 422 South Siming Road, Xiamen, 361005, China
- College of Carbon Neutrality Future Technology, Sichuan University, Chengdu, 610064, China
| | - Peijie Han
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 422 South Siming Road, Xiamen, 361005, China
| | - Danfeng Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 422 South Siming Road, Xiamen, 361005, China
| | - Congcong Du
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 422 South Siming Road, Xiamen, 361005, China
| | - Jiafei Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 422 South Siming Road, Xiamen, 361005, China
| | - Kelvin H L Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 422 South Siming Road, Xiamen, 361005, China
| | - Jingdong Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 422 South Siming Road, Xiamen, 361005, China
| | - Shaolong Wan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 422 South Siming Road, Xiamen, 361005, China
| | - Jianyu Huang
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Shuai Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 422 South Siming Road, Xiamen, 361005, China.
| | - Haifeng Xiong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 422 South Siming Road, Xiamen, 361005, China.
| | - Yong Wang
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
4
|
Dai C, Zhang Y, Liu N, Yu G, Wang N, Xu R, Chen B. Mechanistic insight into the effect of active site motif structures on direct oxidation of methane to methanol over Cu-ZSM-5. Phys Chem Chem Phys 2023; 25:24894-24903. [PMID: 37681261 DOI: 10.1039/d3cp01906c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Direct oxidation of methane to methanol (DMTM), a highly challenging reaction in C1 chemistry, has attracted lots of attention. Herein, we investigate the continuous H2O-mediated N2O-DMTM over a series of Cu-ZSM-5-n zeolites prepared by a solid-state ion-exchange method. Excellent CH3OH productivity (194.8 μmol gcat-1 h-1) and selectivity (67.1%) can be achieved over Cu-ZSM-5-0.3%, which surpasses most recently reported zeolite catalysts. The effect of the active site motif structure on the reaction was systematically investigated by the combined experimental and theoretical studies. It has been revealed that both the monomeric [Cu]+ and binuclear [Cu]+-[Cu]+ sites function to produce CH3OH, following the radical rebound mechanism, wherein the latter one plays a dominant role due to the synergistic effect of neighboring [Cu]+ that can efficiently reduce the N2O dissociation barrier to generate active oxygen for CH4 oxidation. Microkinetic modeling results further show that the dicopper site possesses a much higher net reaction rate (1.23 × 105 s-1) than the monomeric Cu site (0.962 s-1); moreover, H2O can shift the rate determining step from the CH3OH desorption step to the N2O dissociation step over the dicopper site, thereby efficiently favoring CH3OH production and resisting carbon deposition. Generally, the study in the present work would substantially favor other highly efficient catalyst designs.
Collapse
Affiliation(s)
- Chengna Dai
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, China.
| | - Yuchan Zhang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, China.
| | - Ning Liu
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, China.
| | - Gangqiang Yu
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, China.
| | - Ning Wang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, China.
| | - Ruinian Xu
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, China.
| | - Biaohua Chen
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
5
|
Liu N, Li Y, Dai C, Xu R, Yu G, Wang N, Chen B. H2O in situ induced active site structure dynamics for efficient methane direct oxidation to methanol over Fe-BEA zeolite. J Catal 2022. [DOI: 10.1016/j.jcat.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
6
|
Ghampson IT, Yun GN, Kaneko A, Vargheese V, Bando KK, Shishido T, Oyama ST. Effect of Support and Pd Cluster Size on Catalytic Methane Partial Oxidation to Dimethyl Ether Using a NO/O 2 Shuttle. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- I. Tyrone Ghampson
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Gwang-Nam Yun
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
- Green Carbon Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Arisa Kaneko
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Vibin Vargheese
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kyoko K. Bando
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Tetsuya Shishido
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto 615-8245, Japan
| | - S. Ted Oyama
- School of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
7
|
Abstract
Methane is an abundant resource and its direct conversion into value-added chemicals has been an attractive subject for its efficient utilization. This method can be more efficient than the present energy-intensive indirect conversion of methane via syngas, a mixture of CO and H2. Among the various approaches for direct methane conversion, the selective oxidation of methane into methane oxygenates (e.g., methanol and formaldehyde) is particularly promising because it can proceed at low temperatures. Nevertheless, due to low product yields this method is challenging. Compared with the liquid-phase partial oxidation of methane, which frequently demands for strong oxidizing agents in protic solvents, gas-phase selective methane oxidation has some merits, such as the possibility of using oxygen as an oxidant and the ease of scale-up owing to the use of heterogeneous catalysts. Herein, we summarize recent advances in the gas-phase partial oxidation of methane into methane oxygenates, focusing mainly on its conversion into formaldehyde and methanol.
Collapse
|
8
|
Rhoda HM, Heyer AJ, Snyder BER, Plessers D, Bols ML, Schoonheydt RA, Sels BF, Solomon EI. Second-Sphere Lattice Effects in Copper and Iron Zeolite Catalysis. Chem Rev 2022; 122:12207-12243. [PMID: 35077641 DOI: 10.1021/acs.chemrev.1c00915] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Transition-metal-exchanged zeolites perform remarkable chemical reactions from low-temperature methane to methanol oxidation to selective reduction of NOx pollutants. As with metalloenzymes, metallozeolites have impressive reactivities that are controlled in part by interactions outside the immediate coordination sphere. These second-sphere effects include activating a metal site through enforcing an "entatic" state, controlling binding and access to the metal site with pockets and channels, and directing radical rebound vs cage escape. This review explores these effects with emphasis placed on but not limited to the selective oxidation of methane to methanol with a focus on copper and iron active sites, although other transition-metal-ion zeolite reactions are also explored. While the actual active-site geometric and electronic structures are different in the copper and iron metallozeolites compared to the metalloenzymes, their second-sphere interactions with the lattice or the protein environments are found to have strong parallels that contribute to their high activity and selectivity.
Collapse
Affiliation(s)
- Hannah M Rhoda
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Alexander J Heyer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Benjamin E R Snyder
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Dieter Plessers
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Max L Bols
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Robert A Schoonheydt
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Bert F Sels
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Edward I Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305, United States.,Photon Science, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| |
Collapse
|
9
|
Synergistic Effect of Neighboring Fe and Cu Cation Sites Boosts FenCum-BEA Activity for the Continuous Direct Oxidation of Methane to Methanol. Catalysts 2021. [DOI: 10.3390/catal11121444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Direct oxidation of methane to methanol (DMTM), constituting a major challenge for C1 chemistry, has aroused significant interest. The present work reports the synergistic effect of neighboring [Fe]--[Cu] cations, which can significantly boost the CH3OH productivity (100.9 and 41.9 → 259.1 μmol∙g−1cat∙h−1) and selectivity (0.28 and 17.6% → 71.7%) of the best performing Fe0.6%Cu0.68%-BEA (relative to monomeric Fe1.28%- and Cu1.28%-BEA) during the continuous H2O-mediated N2O DMTM. The combined experimental (in situ FTIR, D2O isotopic tracer technique) and theoretical (DFT, ab initio molecular dynamics (AIMD)) studies reveal deeper mechanistic insights that the synergistic effect of [Fe]--[Cu] can not only significantly favor active O production (ΔG = 0.18 eV), but also efficiently motivate the reaction following a H2O proton-transfer route (ΔG = 0.07 eV), eventually strikingly promoting CH3OH productivity/selectivity. Generally, the proposed strategy by employing the synergistic effect of bimetallic cations to modify DMTM activity would substantially favor other highly efficient catalyst designs.
Collapse
|