Honda S, Sugawara R, Ishida S, Iwamoto T. A Spiropentasiladiene Radical Cation: Spin and Positive Charge Delocalization across Two Perpendicular Si═Si Bonds and UV-vis-NIR Absorption in the IR-B Region.
J Am Chem Soc 2021;
143:2649-2653. [PMID:
33565866 DOI:
10.1021/jacs.0c12426]
[Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Spiroconjugation, that is, through-space orbital interactions between two perpendicular π orbitals, is a key concept in the contemporary molecular design of spirocyclic π-electron systems. We synthesized spiropentasiladiene radical cation salt 1 as a dark-green solid via the one-electron oxidation of the stable spiropentasiladiene 2. Characterization of the molecular structure combined with theoretical studies indicated that the spin and positive charge are delocalized across the two perpendicular Si═Si double bonds of 1. Two π(Si═Si) orbitals are split into HOMO and SOMO with a small energy gap owing to the second-order Jahn-Teller distortion and steric repulsion between bulky alkyl groups upon one-electron oxidation. In the UV-vis-NIR spectrum, the longest-wavelength absorption band of 1 (λmax = 1972 nm) covers the IR-B region (1400-3000 nm; 0.89-0.41 eV) despite having the smallest possible spiroconjugation motif. The unprecedented absorption band in the IR region was assigned to the HOMO → SOMO transition that arises from the delocalized π-orbitals in the spirocyclic Si5 skeleton.
Collapse