1
|
Kincses A, Szemerédi N, Benito-Lama M, Dózsai D, Csonka Á, Domínguez-Álvarez E, Spengler G. Selenocompounds as Potent Efflux Pump Inhibitors on Gram-positive Bacteria. ChemMedChem 2024:e202400691. [PMID: 39565046 DOI: 10.1002/cmdc.202400691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/03/2024] [Indexed: 11/21/2024]
Abstract
In recent years, selenocompounds have gained increasing attention as potential anticancer and antibacterial agents. Several selenoderivatives have been confirmed to act as MDR efflux pump inhibitors, based on their in vitro results against the bacterial AcrAB-TolC system and the cancer MDR efflux pump P-glycoprotein. Efflux pumps can contribute directly or indirectly to the virulence of bacteria, as they can reduce the intracellular concentration of antibacterial substances by expelling them out of the cell. The present work aims to study the antibacterial and efflux pump inhibiting properties of four families of selenoesters, namely aspirin-selenoesters, phenone-selenoesters, hydroxy-selenoesters, and benzyl-selenoesters. The real-time ethidium bromide accumulation assay confirmed that these derivatives inhibited the efflux systems of methicillin-resistant Staphylococcus aureus (MRSA) without exerting any antibacterial effect. The relative expression of efflux pump gene of NorA transporter was also monitored in the presence of the most potent derivatives on reference S. aureus, finding that these derivatives could change the expression of the tested efflux pump gene. Regarding the anti-biofilm activity, aspirin-selenoesters, benzyl-selenoesters, and hydroxy-selenoesters could efficiently inhibit the biofilm production of the MRSA strain. It can be concluded that selenocompounds could act as efflux pump inhibitors, thus reducing the virulence of biofilm-producing bacteria.
Collapse
Affiliation(s)
- Annamária Kincses
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis street 6, 6725, Szeged, Hungary
- Institute of Pharmacognosy, Faculty of Pharmacy, University of Szeged, Eötvös street 6, 6720, Szeged, Hungary
| | - Nikoletta Szemerédi
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis street 6, 6725, Szeged, Hungary
| | - Miguel Benito-Lama
- Instituto de Química Orgánica General (IQOG), Consejo Superior de Organizaciones Científicas (CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Dávid Dózsai
- Department of Traumatology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis street 6, 6725, Szeged, Hungary
| | - Ákos Csonka
- Department of Traumatology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis street 6, 6725, Szeged, Hungary
| | - Enrique Domínguez-Álvarez
- Instituto de Química Orgánica General (IQOG), Consejo Superior de Organizaciones Científicas (CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Gabriella Spengler
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis street 6, 6725, Szeged, Hungary
| |
Collapse
|
2
|
Chen S, Scholiers V, Zhang M, Zhang J, Zhu J, Prez FED, Pan X. Thermally Responsive Selenide-containing Materials Based on Transalkylation of Selenonium Salts. Angew Chem Int Ed Engl 2023; 62:e202309652. [PMID: 37851486 DOI: 10.1002/anie.202309652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 10/19/2023]
Abstract
Covalent adaptable networks (CANs) possess unique properties as a result of their internal dynamic bonds, such as self-healing and reprocessing abilities. In this study, we report a thermally responsive C-Se dynamic covalent chemistry (DCC) that relies on the transalkylation exchange between selenonium salts and selenides, which undergo a fast transalkylation reaction in the absence of any catalyst. Additionally, we demonstrate the presence of a dissociative mechanism in the absence of selenide groups. After incorporation of this DCC into selenide-containing polymer materials, it was observed that the cross-linked networks display varying dynamic exchange rates when using different alkylation reagents, suggesting that the reprocessing capacity of selenide-containing materials can be regulated. Also, by incorporating selenonium salts into polymer materials, we observed that the materials exhibited good healing ability at elevated temperatures as well as excellent solvent resistance at ambient temperature. This novel dynamic covalent chemistry thus provides a straightforward method for the healing and reprocessing of selenide-containing materials.
Collapse
Affiliation(s)
- Sisi Chen
- State and Local Joint Engineering Laboratory for Novel Functional Department Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281, S4-bis, 9000, Ghent, Belgium
| | - Vincent Scholiers
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281, S4-bis, 9000, Ghent, Belgium
| | - Mengyao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Department Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jiandong Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Department Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jian Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Department Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Filip E Du Prez
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281, S4-bis, 9000, Ghent, Belgium
| | - Xiangqiang Pan
- State and Local Joint Engineering Laboratory for Novel Functional Department Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
3
|
Khan A. Thiol-epoxy 'click' chemistry: a focus on molecular attributes in the context of polymer chemistry. Chem Commun (Camb) 2023; 59:11028-11044. [PMID: 37642518 DOI: 10.1039/d3cc02555a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Base-catalyzed ring-opening reaction of epoxides with the thiol nucleophiles is useful in the preparation and post-polymerization modification of synthetic polymers. Due to its many beneficial characteristics, this process is referred to as the thiol-epoxy 'click' reaction. In this article, our aim is to discuss the fundamental attributes of this process by tracing our own steps in the field. We initially address the aspects of efficiency, regio-selectivity, stoichiometry, and reaction conditions with the help of linear, hyperbranched, graft, dendritic, and cross-linked poly(β-hydroxy thioether)s. A special emphasis is placed on hydrogel synthesis and photopolymerization on surfaces. Subsequently, quenching of the alkoxide anion is considered which is a critical step in the formation of the β-hydroxy thioether linkage upon completion of reaction. The amenability of further reaction on the hydroxy and thioether groups through esterification and sulfur alkylation is then discussed. Initially, post-gelation/fabrication modification of sulfide linkages is considered to obtain cationic sulfonium hydrogels and zwitterionic photopatterned networks with antibacterial and antibiofouling properties, respectively. A post-synthesis functionalization strategy is then described to access same centered and segregated main-chain poly(β-hydroxy sulfonium)s as potent antibacterial materials. In side-chain polysulfides, the sequential post-synthesis modifications involving poly(glycidyl methacrylate) scaffolds can lead to the formation of amphiphilic homopolymers. The application of such materials is discussed in the arena of siRNA delivery. Finally, concerns relating to the formation of disulfide defects and open research goals such as study of the orthogonality of the reaction are addressed.
Collapse
Affiliation(s)
- Anzar Khan
- Department of Molecules and Materials, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| |
Collapse
|
4
|
Li Y, Ma X, Zhang J, Pan X, Li N, Chen G, Zhu J. Degradable Selenium-Containing Polymers for Low Cytotoxic Antibacterial Materials. ACS Macro Lett 2022; 11:1349-1354. [PMID: 36413206 DOI: 10.1021/acsmacrolett.2c00537] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Developing biodegradable cationic polymers with high antibacterial efficiency and low cytotoxicity is of great significance in biological applications. Selenium is an essential trace element for the human body, and selenium-containing compounds are promising in various health-related applications. To combine selenium with biodegradability, selenide-functionalized polycaprolactones (PCL) with different hydrophobic substituents were synthesized followed by selenoniumization. The optimal polyselenonium salt showed excellent antibacterial activity with an MBC of 2 μg mL-1 and an MIC of 1 μg mL-1 and exhibited good biocompatibility before and after degradation. In addition, the obtained selenium polymer can be well blended with commercial PCL by electrospinning, and films with good antibacterial activity were prepared. This work enriches the knowledge of selenium derivatives and lays a foundation for follow-up research on selenium cationic polymers in the antimicrobial field.
Collapse
Affiliation(s)
- Yingying Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiaoliang Ma
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jiandong Zhang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiangqiang Pan
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Na Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Gaojian Chen
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jian Zhu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
5
|
Regioselective One-Pot Synthesis of Novel Functionalized Organoselenium Compound by Bis-Alkoxyselenenylation of Alkenes with Selenium Dibromide and Alcohols. INORGANICS 2022. [DOI: 10.3390/inorganics10120239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The one-pot efficient synthesis of novel functionalized organoselenium compound by bis-alkoxyselenenylation of alkenes with selenium dibromide and alcohols was developed. The reaction of the selenium dibromide with cyclopentene or cyclohexene in the system alcohol/sodium bicarbonate/methylene chloride at room temperature afforded bis(2-alkoxycycloalkyl) selenides in 90–99% yields. The regioselective and efficient method for bis-alkoxylation of terminal alkenes was developed based on the addition of selenium dibromide with 1-alkenes in acetonitrile followed by refluxing of addition products in alcohols in the presence of traces of sulfuric acid. This method made it possible to selectively obtain bis(2-alkoxyalkyl) selenides in 94–98% yields.
Collapse
|
6
|
Regio- and Stereoselective Synthesis of (Z,Z)-Bis(3-amino-3-oxo-1-propenyl) Selenides and Diselenides Based on 2-propynamides: A Novel Family of Diselenides with High Glutathione Peroxidase-like Activity. INORGANICS 2022. [DOI: 10.3390/inorganics10060074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
The efficient regio- and stereoselective syntheses of (Z,Z)-bis(3-amino-3-oxo-1-propenyl) selenides and diselenides in high yields based on the nucleophilic addition of sodium selenide to 2-propynamides and sodium diselenide to 3-(trimethylsilyl)-2-propynamides have been developed. The first examples of the addition of a selenium-centered nucleophile to 2-propynamides with a terminal triple bond and diselenide anion to 3-(trimethylsilyl)-2-propynamides have been carried out. Bis(3-amino-3-oxo-1-propenyl) diselenides are a novel family of compounds, none of which has yet been described in the literature. The glutathione peroxidase-like activity of the obtained compounds has been evaluated and products with high activity have been found. It was established that diselenides are superior to selenides with the same substituents in glutathione peroxidase-like activity. The results of the structural studying of products by single-crystal X-ray diffraction analysis and 77Se-NMR data are discussed.
Collapse
|
7
|
Sun J, Hong YL, Wang C, Tan ZW, Liu CM. Main-chain/Side-chain type Phosphine Oxide-Containing Reactive Polymers Derived from same Monomer: Controllable RAFT Polymerisation and ring-opening Polycondensation. Polym Chem 2022. [DOI: 10.1039/d2py00006g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper reports the synthesis and selective polymerisations of an epoxy-rich phosphine oxide-containing styrenic monomer, namely 4-vinylbenzyl-bis((oxiran-2-ylmethoxy)methyl) phosphine oxide (VBzBOPO). The styryl and epoxy functionalities could be polymerized independently through...
Collapse
|
8
|
Wang X, Wang G, Zhao J, Zhu Z, Rao J. Main-Chain Sulfonium-Containing Homopolymers with Negligible Hemolytic Toxicity for Eradication of Bacterial and Fungal Biofilms. ACS Macro Lett 2021; 10:1643-1649. [PMID: 35549147 DOI: 10.1021/acsmacrolett.1c00698] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Antimicrobials against planktonic cells and established biofilms at low doses are in increasing demand to tackle antibiotic-resistant biofilm infections. As a promising alternative to antibiotics, cationic polymers can effectively kill planktonic microbes but usually require high concentrations to eradicate the established biofilms. Herein, we developed a series of sulfonium-based homopolymers with cationic sulfoniums and alkane spacers in the main chain. These polysulfoniums presented effective activity against planktonic fungi (Candida albicans) and bacteria (Escherichia coli and Staphylococcus aureus) with minimum inhibition concentrations (MICs) of 0.5-32 μg/mL, and the optimal composition can provide an 80-90% reduction in biofilm mass and >99% killing of Candida albicans and Escherichia coli cells in 3-day mature biofilms at 2 × MIC as well as steadily low hemolytic toxicity. The influence of amphiphilicity and charge density of polysulfonium homopolymers on their antimicrobial activity against planktonic microbes and mature biofilms was investigated to provide insights for effective antimicrobial polymer design.
Collapse
Affiliation(s)
- Xiao Wang
- Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People’s Republic of China
| | - Guixian Wang
- Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People’s Republic of China
| | - Jinghua Zhao
- Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People’s Republic of China
| | - Zhiyuan Zhu
- Suzhou Jufeng Electrical Insulation System Co., Ltd., Suzhou, Jiangsu 215214, People’s Republic of China
| | - Jingyi Rao
- Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People’s Republic of China
| |
Collapse
|
9
|
Nornberg AB, de Aquino TFB, Martins CC, Luchese C, Wilhelm EA, Jacob RG, Hartwig D, Fajardo AR. Organoselenium-chitosan derivative: Synthesis via "click" reaction, characterization and antioxidant activity. Int J Biol Macromol 2021; 191:19-26. [PMID: 34537295 DOI: 10.1016/j.ijbiomac.2021.09.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/31/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023]
Abstract
The derivatization of chitosan (CS) is widely exploited to endow this polysaccharide with enhanced physicochemical and biological properties. Beyond the synthetic route, the nature of the compounds used to functionalize the CS-derivatives exerts a pivotal role in their final properties. Making use of a simple "click" reaction, we synthesized for the first time an organoselenium-CS derivative through a 1,2,3-triazole formation. The product (CS-TSe) was characterized in detail by FTIR, NMR (1H, 13C, and 77Se) and UV-Vis techniques, and SEM microscopy. The antioxidant activity of CS-TSe was examined by ABTS+ and DPPH (free radical-scavenging) assays. Experimentally, it was demonstrated that CS-TSe has superior antioxidant activity compared with raw CS and "free" organoselenium compound, suggesting a benign and synergistic effect due to the derivatization. In short, the antioxidant property of CS-TSe combined with the other attractive properties of CS and selenium could be useful in the formulation of advanced materials for biomedical and packaging applications.
Collapse
Affiliation(s)
- Andressa B Nornberg
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900 Pelotas, RS, Brazil
| | - Thalita F B de Aquino
- Laboratório de Síntese Orgânica Limpa (LASOL), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, 96010-900 Pelotas, RS, Brazil
| | - Carolina C Martins
- Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, 96010-900 Pelotas, RS, Brazil
| | - Cristiane Luchese
- Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, 96010-900 Pelotas, RS, Brazil
| | - Ethel A Wilhelm
- Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, 96010-900 Pelotas, RS, Brazil
| | - Raquel G Jacob
- Laboratório de Síntese Orgânica Limpa (LASOL), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, 96010-900 Pelotas, RS, Brazil
| | - Daniela Hartwig
- Laboratório de Síntese Orgânica Limpa (LASOL), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, 96010-900 Pelotas, RS, Brazil
| | - André R Fajardo
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900 Pelotas, RS, Brazil.
| |
Collapse
|
10
|
Xu B, Liu S, Li Y, Zhang J, Pan X, Zhu J. Synthesis of Precisely Structured Olefin Copolymers by Phenylseleno Oxidation Elimination. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Bin Xu
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis Department of Polymer Science and Engineering College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| | - Shaoxiang Liu
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis Department of Polymer Science and Engineering College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| | - Yingying Li
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis Department of Polymer Science and Engineering College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| | - Jiandong Zhang
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis Department of Polymer Science and Engineering College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| | - Xiangqiang Pan
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis Department of Polymer Science and Engineering College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| | - Jian Zhu
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis Department of Polymer Science and Engineering College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| |
Collapse
|
11
|
Synthesis and Antibacterial Activity of Selenium-functionalized Poly(ε-caprolactone). CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2638-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Hu Y, Zhao J, Zhang J, Zhu Z, Rao J. Broad-Spectrum Bactericidal Activity and Remarkable Selectivity of Main-Chain Sulfonium-Containing Polymers with Alternating Sequences. ACS Macro Lett 2021; 10:990-995. [PMID: 35549111 DOI: 10.1021/acsmacrolett.1c00340] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Incorporation of cationic groups into polymers represents one of the most widely used strategies to prepare antibacterial materials. Sulfonium, as a typical cationic moiety, displays potent antibacterial efficacy in the form of small molecules, however, has long underperformed in polymeric systems. Herein, we developed a series of alternating polysulfoniums, where the hydrophobicity of each alternating unit can be accurately tuned by altering the monomer precursors. Excellent antibacterial activity against a broad spectrum of clinically relevant bacteria, including Methicillin-resistant Staphylococcus aureus, can be obtained in the optimal compositions with minimum bactericidal concentrations in the range of 1.25-10 μg/mL, as well as negligible hemolytic effect at polymer concentrations even up to 10000 μg/mL. Bacteria do not readily develop resistance to polysulfoniums due to the antibacterial action is possibly the membrane disrupting mechanism. This work demonstrates sulfonium-based polymers with well-defined sequences can function as a promising candidate to combat drug-resistant bacterial infection.
Collapse
Affiliation(s)
- Yongjin Hu
- Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People’s Republic of China
- School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, Anhui 230601, People’s Republic of China
| | - Jinghua Zhao
- Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People’s Republic of China
| | - Jingyan Zhang
- School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, Anhui 230601, People’s Republic of China
| | - Zhiyuan Zhu
- Suzhou Jufeng Electrical Insulation System Co., Ltd., Suzhou, Jiangsu 215214, People’s Republic of China
| | - Jingyi Rao
- Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People’s Republic of China
| |
Collapse
|
13
|
Eom T, Khan A. Micellar Assembly and Disassembly of Organoselenium Block Copolymers through Alkylation and Dealkylation Processes. Polymers (Basel) 2021; 13:2456. [PMID: 34372061 PMCID: PMC8348486 DOI: 10.3390/polym13152456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of this work is to demonstrate that the alkylation and dealkylation of selenium atoms is an effective tool in controlling polymer amphiphilicity and, hence, its assembly and disassembly process in water. To establish this concept, poly(ethylene glycol)-block-poly(glycidyl methacrylate) was prepared. A post-synthesis modification with phenyl selenolate through a base-catalyzed selenium-epoxy 'click' reaction then gave rise to the side-chain selenium-containing block copolymer with an amphiphilic character. This polymer assembled into micellar structures in water. However, silver tetrafluoroborate-promoted alkylation of the selenium atoms resulted in the formation of hydrophilic selenonium tetrafluoroborate salts. This enhancement in the chemical polarity of the second polymer block removed the amphiphilic character from the polymer chain and led to the disassembly of the micellar structures. This process could be reversed by restoring the original amphiphilic polymer character through the dealkylation of the cations.
Collapse
Affiliation(s)
| | - Anzar Khan
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul 02841, Korea;
| |
Collapse
|
14
|
Barát V, Eom T, Khan A, Stuparu MC. Buckybowl polymers: synthesis of corannulene-containing polymers through post-polymerization modification strategy. Polym Chem 2021. [DOI: 10.1039/d1py00664a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In this study, we explore the synthesis of methacrylate polymers carrying buckybowl corannulene as the polymer side-chain.
Collapse
Affiliation(s)
- Viktor Barát
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Taejun Eom
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-Ro, Seongbuk-Gu, 02841 Seoul, Korea
| | - Anzar Khan
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-Ro, Seongbuk-Gu, 02841 Seoul, Korea
| | - Mihaiela C. Stuparu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| |
Collapse
|
15
|
Eom T, Khan A. Selenonium Polyelectrolyte Synthesis through Post-Polymerization Modifications of Poly (Glycidyl Methacrylate) Scaffolds. Polymers (Basel) 2020; 12:E2685. [PMID: 33202976 PMCID: PMC7697662 DOI: 10.3390/polym12112685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 02/02/2023] Open
Abstract
Atom transfer radical polymerization of glycidyl methacrylate monomer with poly(ethylene glycol)-based macroinitiators leads to the formation of reactive block copolymers. The epoxide side-chains of these polymers can be subjected to a regiospecific base-catalyzed nucleophilic ring-opening reaction with benzeneselenol under ambient conditions. The ß-hydroxy selenide linkages thus formed can be alkylated to access polyselenonium salts. 77Se-NMR indicates the formation of diastereomers upon alkylation. In such a manner, sequential post-polymerization modifications of poly(glycidyl methacrylate) scaffolds via selenium-epoxy and selenoether alkylation reactions furnish practical access to poly(ethylene glycol)-based cationic organoselenium copolymers.
Collapse
Affiliation(s)
| | - Anzar Khan
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul 02841, Korea;
| |
Collapse
|