1
|
Li F, Xiong W, Song G, Yan Y, Li G, Wang C, Xiao J, Xue D. Light-Promoted Ni-Catalyzed Cross-Coupling of Aryl Chlorides with Hydrazides: Application to the Synthesis of Rizatriptan. Org Lett 2023; 25:3287-3292. [PMID: 37114772 DOI: 10.1021/acs.orglett.3c01047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
A general and highly efficient photochemical C-N coupling reaction of challenging (hetero)aryl chlorides with hydrazides is reported. Catalyzed by a Ni(II)-bipyridine complex, this reaction provides an efficient tool for the synthesis of arylhydrazines in the presence of a soluble organic amine base without an external photosensitizer. The reaction features a wide substrate range (54 examples) and excellent functional group tolerance. The method has also been successfully applied to the three-step concise synthesis of rizatriptan, an effective drug for migraine and cluster headaches.
Collapse
Affiliation(s)
- Fei Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China
| | - Weikang Xiong
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China
| | - Geyang Song
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China
| | - Yonggang Yan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China
| | - Gang Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China
| | - Chao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China
| | - Jianliang Xiao
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Dong Xue
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China
| |
Collapse
|
2
|
Flow photochemistry — from microreactors to large-scale processing. Curr Opin Chem Eng 2023. [DOI: 10.1016/j.coche.2023.100897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
3
|
Li D, Zhang W, Zhu L, Yin S, Kambe N, Qiu R. FeO(OH)@C-Catalyzed Selective Hydrazine Substitution of p-Nitro-Aryl Fluorides and their Application for the Synthesis of Phthalazinones. ChemistryOpen 2022; 11:e202200023. [PMID: 35585033 PMCID: PMC9117154 DOI: 10.1002/open.202200023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/08/2022] [Indexed: 11/21/2022] Open
Abstract
An efficient hydrazine substitution of p-nitro-aryl fluorides with hydrazine hydrates catalyzed by FeO(OH)@C nanoparticles is described. This hydrazine substitutions of p-nitro-aryl fluorides bearing electron-withdrawing groups proceeded efficiently with high yield and selectivity. Similarly, hydrogenations of p-nitro-aryl fluorides containing electron-donating groups also smoothly proceeded under mild conditions. Furthermore, with these prepared aryl hydrazines, some phthalazinones, interesting as potential structures for pharmaceuticals, have successfully been synthesized in high yields.
Collapse
Affiliation(s)
- Dingzhong Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan UniversityChangsha410082P. R. China
| | - Wensheng Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan UniversityChangsha410082P. R. China
| | - Longzhi Zhu
- Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronic Engineering, Key Lab of Optoelectronics Devices and systems of Ministry of Education/Guangdong ProvinceShenzhen UniversityShenzhen518060P. R. China
| | - Shuang‐Feng Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan UniversityChangsha410082P. R. China
| | - Nobuaki Kambe
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan UniversityChangsha410082P. R. China
| | - Renhua Qiu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan UniversityChangsha410082P. R. China
| |
Collapse
|
4
|
Buglioni L, Raymenants F, Slattery A, Zondag SDA, Noël T. Technological Innovations in Photochemistry for Organic Synthesis: Flow Chemistry, High-Throughput Experimentation, Scale-up, and Photoelectrochemistry. Chem Rev 2022; 122:2752-2906. [PMID: 34375082 PMCID: PMC8796205 DOI: 10.1021/acs.chemrev.1c00332] [Citation(s) in RCA: 250] [Impact Index Per Article: 125.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Indexed: 02/08/2023]
Abstract
Photoinduced chemical transformations have received in recent years a tremendous amount of attention, providing a plethora of opportunities to synthetic organic chemists. However, performing a photochemical transformation can be quite a challenge because of various issues related to the delivery of photons. These challenges have barred the widespread adoption of photochemical steps in the chemical industry. However, in the past decade, several technological innovations have led to more reproducible, selective, and scalable photoinduced reactions. Herein, we provide a comprehensive overview of these exciting technological advances, including flow chemistry, high-throughput experimentation, reactor design and scale-up, and the combination of photo- and electro-chemistry.
Collapse
Affiliation(s)
- Laura Buglioni
- Micro
Flow Chemistry and Synthetic Methodology, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, Het Kranenveld, Bldg 14—Helix, 5600 MB, Eindhoven, The Netherlands
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Fabian Raymenants
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Aidan Slattery
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Stefan D. A. Zondag
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Timothy Noël
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Candish L, Collins KD, Cook GC, Douglas JJ, Gómez-Suárez A, Jolit A, Keess S. Photocatalysis in the Life Science Industry. Chem Rev 2021; 122:2907-2980. [PMID: 34558888 DOI: 10.1021/acs.chemrev.1c00416] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the pursuit of new pharmaceuticals and agrochemicals, chemists in the life science industry require access to mild and robust synthetic methodologies to systematically modify chemical structures, explore novel chemical space, and enable efficient synthesis. In this context, photocatalysis has emerged as a powerful technology for the synthesis of complex and often highly functionalized molecules. This Review aims to summarize the published contributions to the field from the life science industry, including research from industrial-academic partnerships. An overview of the synthetic methodologies developed and strategic applications in chemical synthesis, including peptide functionalization, isotope labeling, and both DNA-encoded and traditional library synthesis, is provided, along with a summary of the state-of-the-art in photoreactor technology and the effective upscaling of photocatalytic reactions.
Collapse
Affiliation(s)
- Lisa Candish
- Drug Discovery Sciences, Pharmaceuticals, Bayer AG, 42113 Wuppertal, Germany
| | - Karl D Collins
- Bayer Foundation, Public Affairs, Science and Sustainability, Bayer AG, 51368 Leverkusen, Germany
| | - Gemma C Cook
- Discovery High-Throughput Chemistry, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, U.K
| | - James J Douglas
- Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield SK10 2NA, U.K
| | - Adrián Gómez-Suárez
- Organic Chemistry, Bergische Universität Wuppertal, 42119 Wuppertal, Germany
| | - Anais Jolit
- Medicinal Chemistry Department, Neuroscience Discovery Research, AbbVie Deutschland GmbH & Co. KG, 67061 Ludwigshafen, Germany
| | - Sebastian Keess
- Medicinal Chemistry Department, Neuroscience Discovery Research, AbbVie Deutschland GmbH & Co. KG, 67061 Ludwigshafen, Germany
| |
Collapse
|
6
|
Lei J, Xie W, Li J, Wu Y, Xie X. Synthesis of N‐Aryl‐ and N‐Alkenylhydrazides through C(sp
2
)−N Bond Construction. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jian Lei
- College of Chemical Engineering and Materials Science Quanzhou Normal University 398 Donghai Avenue Quanzhou 362000 P. R. China
| | - Wenqian Xie
- College of Chemical Engineering and Materials Science Quanzhou Normal University 398 Donghai Avenue Quanzhou 362000 P. R. China
| | - Jing Li
- State Key Laboratory of Respiratory Disease Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou 510530 P. R. China
| | - Ya Wu
- College of Biological and Chemical Engineering Chongqing University of Education No.9 Xuefu Avenue Chongqing 400067 P. R. China
| | - Xiaolan Xie
- College of Chemical Engineering and Materials Science Quanzhou Normal University 398 Donghai Avenue Quanzhou 362000 P. R. China
| |
Collapse
|