1
|
Xie X, Huang H, Fan Y, Luo Y, Pang Q, Li X, Huang W. Assembly of spirocyclic pyrazolone-pyrrolo[4,3,2- de]quinoline skeleton via cascade [1,5] hydride transfer/cyclization by C(sp 3)-H functionalization. Org Biomol Chem 2023; 21:7300-7304. [PMID: 37667627 DOI: 10.1039/d3ob01063e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Herein, a highly efficient, scalable, and cascade [1,5] hydride transfer/cyclization method for constructing unique spirocyclic pyrazolone-pyrrolo[4,3,2-de]quinoline structures via C(sp3)-H functionalization is achieved, using pyrazolones and oxindoles attached to C4 amines. This strategy represents a limited approach utilizing C-H activation to construct spirocyclic pyrazolone scaffolds with moderate to excellent reaction performance.
Collapse
Affiliation(s)
- Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - He Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yu Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yuan Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Qiwen Pang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
2
|
Wei X, Huang Y, Karimi Z, Qu J, Wang B. DMAP-Catalyzed [4+3] Spiroannulation of Pyrazolone-Derived Morita-Baylis-Hillman Carbonates with N-( o-Chloromethyl)aryl Amides to Forge Spiro[pyrazolone-azepine] Scaffolds. J Org Chem 2023. [PMID: 37389982 DOI: 10.1021/acs.joc.3c00262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
A novel DMAP-catalyzed [4+3] spiroannulation of pyrazolone-derived Morita-Baylis-Hillman carbonates with N-(o-chloromethyl)aryl amides was developed. This reaction led to the assembly of medicinally relevant pyrazolone and azepine nuclei into a structurally new spirocyclic scaffold, and a diverse array of spiro[pyrazolone-azepine] products were afforded in good to excellent yields (up to 93%) with a wide substrate scope (23 examples) under mild conditions. Moreover, a gram-scale reaction and product transformations were conducted, which further increased the diversity of products.
Collapse
Affiliation(s)
- Xingfu Wei
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yue Huang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Zahra Karimi
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, P. R. China
| |
Collapse
|
3
|
Gil-Ordóñez M, Martín L, Maestro A, Andrés JM. Organocatalytic asymmetric synthesis of oxazolidino spiropyrazolinones via N, O-acetalization/aza Michael addition domino reaction between N-Boc pyrazolinone ketimines and γ-hydroxyenones. Org Biomol Chem 2023; 21:2361-2369. [PMID: 36847380 DOI: 10.1039/d2ob02290g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
A squaramide-catalyzed asymmetric N,O-acetalization/aza Michael addition domino reaction between N-Boc ketimines derived from pyrazolin-5-ones and γ-hydroxyenones has been developed for the construction of pyrazolinone embedded spirooxazolidines. A hydroquinine derived bifunctional squaramide catalyst was found to be the most effective for this cascade spiroannulation. This new protocol allows the generation of two stereocenters and the desired products are obtained in good yields with moderate to good diastereoselectivities (up to 3.3 : 1 dr) and high enantioselectivities (up to >99% ee) from a range of substituted N-Boc pyrazolinone ketimines and γ-hydroxyenones. The developed protocol is amenable for a scale-up reaction.
Collapse
Affiliation(s)
- Marta Gil-Ordóñez
- GIR-SintACat-Instituto Universitario CINQUIMA y Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid, Paseo Belén 7, 47011 Valladolid, Spain.
| | - Laura Martín
- GIR-SintACat-Instituto Universitario CINQUIMA y Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid, Paseo Belén 7, 47011 Valladolid, Spain.
| | - Alicia Maestro
- GIR-SintACat-Instituto Universitario CINQUIMA y Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid, Paseo Belén 7, 47011 Valladolid, Spain.
| | - José M Andrés
- GIR-SintACat-Instituto Universitario CINQUIMA y Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid, Paseo Belén 7, 47011 Valladolid, Spain.
| |
Collapse
|
4
|
Tian Z, Jiang J, Yan ZH, Luo QQ, Zhan G, Huang W, Li X, Han B. Catalytic asymmetric [3 + 2] cycloaddition of pyrazolone-derived MBH carbonate: highly stereoselective construction of the bispiro-[pyrazolone-dihydropyrrole-oxindole] skeleton. Chem Commun (Camb) 2022; 58:5363-5366. [PMID: 35411363 DOI: 10.1039/d2cc00618a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A catalytic asymmetric construction of the bispiro[pyrazolone-dihydropyrrole-oxindole] skeleton catalyzed by chiral DMAP-derived catalyst was successfully achieved by employing recently explored pyrazolone-derived MBH carbonate in high yields with excellent stereoselectivities. The proposed transition state indicated that the intermolecular hydrogen bonds and π-π interactive forces played an essential role in stereoselective chemical transformation.
Collapse
Affiliation(s)
- Zhou Tian
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jing Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Zhen-Hui Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Qing-Qing Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
5
|
Bao X, Wang X, Tian JM, Ye X, Wang B, Wang H. Recent advances in the applications of pyrazolone derivatives in enantioselective synthesis. Org Biomol Chem 2022; 20:2370-2386. [PMID: 35234777 DOI: 10.1039/d1ob02426d] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pyrazolones and pyrazoles, featuring nitrogen-nitrogen bonds, are two of the most important classes of heterocycles, owing to their widespread occurrence in medicinal chemistry and functional materials. The last decade has witnessed a rapid increase in the construction of chiral pyrazolone and pyrazole derivatives, with the application of pyrazolone derivatives as powerful synthons. Since our last review in 2018, a large number of new achievements has emerged in this area, requiring a timely update. Thus, this review summarizes these elegant achievements based on the multiple reactive sites of different pyrazolone synthons. In addition, important mechanisms and interesting biological investigations relating to the corresponding products are also discussed.
Collapse
Affiliation(s)
- Xiaoze Bao
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Xingyue Wang
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Jin-Miao Tian
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Xinyi Ye
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 112024, China.
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
6
|
Chen J, Zhang Y, Zhu DY, Zhang XJ, Yan M. Construction of Chiral Quaternary Carbon Stereocenters by Asymmetric Michael Addition of 4‐Amido‐5‐hydroxylpyrazoles to Ethylene Sulfonyl Fluoride. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jie Chen
- Sun Yat-Sen University School of Pharmaceutical Sciences CHINA
| | - Yue Zhang
- Sun Yat-Sen University School of Pharmaceutical Sciences CHINA
| | - Dong-yu Zhu
- Sun Yat-Sen University School of Pharmaceutical Sciences CHINA
| | - Xue-jing Zhang
- Sun Yat-Sen University School of Pharmaceutical Sciences No 132 Donghuanxi Road, Guangzhou Mega Center North 510006 guangzhou CHINA
| | - Ming Yan
- Sun Yat-Sen University School of Pharmaceutical Sciences CHINA
| |
Collapse
|
7
|
Huang Y, Wei X, Bao X, Nawaz S, Qu J, Wang B. Asymmetric 1,3-dipolar cycloaddition of 4-aminopyrazolone-based azomethine ylides: a straightforward approach to spiropyrazolones. Org Chem Front 2022. [DOI: 10.1039/d2qo00426g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The asymmetric [3+2] cycloaddition of 4-amino pyrazolone-derived azomethine ylides with α,β-enones has been established for the synthesis of 4-spiropyazolones derivatives with four contiguous stereocenters. This cycloaddition process delivered spiro[pyrrolidine-2,4’-pyrazolone] derivatives...
Collapse
|
8
|
Tang J, Yan ZH, Zhan G, Yang QQ, Chen YY, Li X, Huang W. Visible-Light-Mediated Sequential Wolff Rearrangement and Staudinger Cycloaddition Enabling Assembly of Spiro-Pyrazolone-β-Lactams. Org Chem Front 2022. [DOI: 10.1039/d2qo00742h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Visible-light-mediated sequential Wolff rearrangement and Staudinger cycloaddition for the assembly of valuable spiro-pyrazolone-β-lactams for the first time is disclosed by utilizing in situ generated ketenes and pyrazolone ketimines. This powerful...
Collapse
|
9
|
Gil-Ordóñez M, Maestro A, Ortega P, Jambrina PG, Andrés JM. NHC-catalysed [3 + 2]-asymmetric annulation between pyrazolin-4,5-diones and enals: synthesis of novel spirocyclic pyrazolone γ-butyrolactones and computational study of mechanism and stereoselectivity. Org Chem Front 2022. [DOI: 10.1039/d1qo01462e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein we present the first asymmetric synthesis of spiropyrazolone γ-butyrolactones from 1H-pyrazol-4,5-diones and enals by an NHC-catalysed [3 + 2] annulation. DFT calculations carried out predict the experimental configuration of final adducts.
Collapse
Affiliation(s)
- Marta Gil-Ordóñez
- GIR-SintACat-Instituto Universitario CINQUIMA y Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid, Paseo Belén 7, 47011 Valladolid, Spain
| | - Alicia Maestro
- GIR-SintACat-Instituto Universitario CINQUIMA y Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid, Paseo Belén 7, 47011 Valladolid, Spain
| | - Pablo Ortega
- Departamento de Química Física, University of Salamanca, 37008, Salamanca, Spain
| | - Pablo G. Jambrina
- Departamento de Química Física, University of Salamanca, 37008, Salamanca, Spain
| | - José M. Andrés
- GIR-SintACat-Instituto Universitario CINQUIMA y Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid, Paseo Belén 7, 47011 Valladolid, Spain
| |
Collapse
|
10
|
Mondal A, Satpathi B, Ramasastry SSV. Phosphine-Catalyzed Intramolecular Vinylogous Aldol Reaction of α-Substituted Enones. Org Lett 2021; 24:256-261. [PMID: 34908421 DOI: 10.1021/acs.orglett.1c03913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We demonstrate the first phosphine-catalyzed intramolecular vinylogous aldol reaction (IVAR) of α-substituted enones. This strategy provides access to various pentannulated (hetero)arenes and dibenzocycloheptanones incorporated with two contiguous stereocenters, one of which is an all-carbon quaternary center. The scope of this work is further broadened through elaborations of the IVAR adducts to (i) benzannulated nine-membered carbocyclic systems, (ii) interesting classes of 1,3-dienes, 1,3,5-trienes, and 1-yn-3,5-dienes, and (iii) the analogs of echinolactone D and russujaponol F.
Collapse
Affiliation(s)
- Atanu Mondal
- Organic Synthesis and Catalysis Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S A S Nagar, Manauli PO, Punjab 140 306, India
| | - Bishnupada Satpathi
- Organic Synthesis and Catalysis Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S A S Nagar, Manauli PO, Punjab 140 306, India
| | - S S V Ramasastry
- Organic Synthesis and Catalysis Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S A S Nagar, Manauli PO, Punjab 140 306, India
| |
Collapse
|
11
|
Crescentini LD, Favi G, Mari G, Ciancaleoni G, Costamagna M, Santeusanio S, Mantellini F. Experimental and Theoretical DFT Investigations in the [2,3]-Wittig-Type Rearrangement of Propargyl/Allyl-Oxy-Pyrazolones. Molecules 2021; 26:6557. [PMID: 34770965 PMCID: PMC8587800 DOI: 10.3390/molecules26216557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Here we report the synthesis of interesting 3-alkyl-4-hydroxy-1-aryl-4-(propa-1,2-dienyl)1H-pyrazol-5(4H)-ones and 9-alkyl-7-aryl-1-oxa-7,8-diazaspiro[4.4]nona-3,8-dien-6-ones, starting from 1,2-diaza-1,3-dienes (DDs) and propargyl alcohol. The reaction proceeds through a sequence Michael-type nucleophilic attack/cyclization/[2,3]-Wittig rearrangement. In the same way, the reaction between the aforementioned DDs and allyl alcohol furnished 4-allyl-4-hydroxy-3-alkyl-1-aryl-1H-pyrazol-5(4H)-ones. A DFT study was also carried out, in order to have decisive clarifications about the mechanism.
Collapse
Affiliation(s)
- Lucia De Crescentini
- Department of Biomolecular Sciences, Section of Organic Chemistry and Organic Natural Compounds, University of Urbino “Carlo Bo”, Via I Maggetti 24, 61029 Urbino, PU, Italy; (G.F.); (G.M.); (S.S.)
| | - Gianfranco Favi
- Department of Biomolecular Sciences, Section of Organic Chemistry and Organic Natural Compounds, University of Urbino “Carlo Bo”, Via I Maggetti 24, 61029 Urbino, PU, Italy; (G.F.); (G.M.); (S.S.)
| | - Giacomo Mari
- Department of Biomolecular Sciences, Section of Organic Chemistry and Organic Natural Compounds, University of Urbino “Carlo Bo”, Via I Maggetti 24, 61029 Urbino, PU, Italy; (G.F.); (G.M.); (S.S.)
| | - Gianluca Ciancaleoni
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, PI, Italy; (G.C.); (M.C.)
| | - Marcello Costamagna
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, PI, Italy; (G.C.); (M.C.)
| | - Stefania Santeusanio
- Department of Biomolecular Sciences, Section of Organic Chemistry and Organic Natural Compounds, University of Urbino “Carlo Bo”, Via I Maggetti 24, 61029 Urbino, PU, Italy; (G.F.); (G.M.); (S.S.)
| | - Fabio Mantellini
- Department of Biomolecular Sciences, Section of Organic Chemistry and Organic Natural Compounds, University of Urbino “Carlo Bo”, Via I Maggetti 24, 61029 Urbino, PU, Italy; (G.F.); (G.M.); (S.S.)
| |
Collapse
|
12
|
Nawaz S, Huang Y, Bao X, Wei S, Wei X, Qu J, Wang B. Construction of a spiro[pyrazolone-4,2'-pyridoindole] scaffold via a [3 + 3] cycloaddition of 2-indolylmethanol with a 4-aminopyrazolone-derived azomethine ylide. Org Biomol Chem 2021; 19:8530-8538. [PMID: 34546283 DOI: 10.1039/d1ob01631h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This work reports a facile [3 + 3] cycloaddition sequence of two important heterocyclic pharmacophores, pyrazolone and 2-indolylmethanol, integrated into a polycyclic hybrid scaffold. In this process, an in situ generated azomethine ylide obtained from 4-aminopyrazolone and benzaldehyde reacts with 2-indolylmethanols to offer spiro[pyrazolone-pyridoindole] scaffolds in high yields with excellent diastereoselectivities. Remarkably, the reaction is carried out at room temperature without any catalyst and base.
Collapse
Affiliation(s)
- Shah Nawaz
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China. .,Department of Chemistry, Karakoram International University, Gilgit-Baltistan, 15100, Pakistan
| | - Yue Huang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China.
| | - Xiaoze Bao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China.
| | - Shiqiang Wei
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China.
| | - Xingfu Wei
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China.
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China.
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China.
| |
Collapse
|
13
|
Li D, Zhang W, Zhang S, Sun W, Zhao J, Wang B, Qu J, Zhou Y. Palladium-Catalyzed Asymmetric Trifluoromethylated Allylic Alkylation of Pyrazolones Enabled by α-(Trifluoromethyl)alkenyl Acetates. Org Lett 2021; 23:5804-5808. [PMID: 34279113 DOI: 10.1021/acs.orglett.1c01957] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The first asymmetric trifluoromethylated allylic alkylation of pyrazolones using α-(trifluoromethyl)alkenyl acetates as a novel trifluoromethylated allylation reagent is described, affording various functionalized chiral pyrazolones containing a trifluoromethylated allyl substituent in high yields with excellent regio-/enantio-/diastereoselectivities. Mechanistically, the double-bond migration of α-(trifluoromethyl)alkenyl acetates in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene is initial and interesting step. More importantly, this study is of significance in providing a novel and widely applicable trifluoromethyl-containing allylation reagent.
Collapse
Affiliation(s)
- Dong Li
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Wande Zhang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Shuaibo Zhang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Wuding Sun
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Jinfeng Zhao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Yuhan Zhou
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| |
Collapse
|
14
|
Squaramide-catalyzed asymmetric Michael/cyclization of 4-isothiocyanato pyrazolones and α,β-unsaturated ketones. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Yang Y, Wang X, Ye X, Wang B, Bao X, Wang H. Advances of α-activated cyclic isothiocyanate for the enantioselective construction of spirocycles. Org Biomol Chem 2021; 19:4610-4621. [PMID: 33949598 DOI: 10.1039/d1ob00564b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The efficient and enantioselective synthesis of pharmaceutically important spirocycles has attracted the focus of organic and medicinal chemists. In this context, with the excellent reactivity of α-activated isothiocyanate as formal 1,3-dipoles in the (3 + 2) cyclization process, the cyclic isothiocyanates featuring important pharmacophores, such as oxindole, pyrazolone, and indanone moieties, have emerged as powerful precursors to access a variety of spirocycles with highly structural diversities. In addition, the facile transformations of these spirocycles have shown potential applications in drug design. This review will cover the recent advances of α-activated cyclic isothiocyanates in the enantioselective construction of spirocycles since 2015, and the applications of corresponding products in organic and medicinal chemistry.
Collapse
Affiliation(s)
- Yang Yang
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Xingyue Wang
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Xinyi Ye
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 112024, China
| | - Xiaoze Bao
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|