1
|
Yan X, Cao J, Luo H, Li Z, Cao Z, Mo Y, Jiang YB. Heterochiral coupling to bilateral β-turn structured azapeptides bearing two remote chiral centers. Nat Commun 2024; 15:9271. [PMID: 39468062 PMCID: PMC11519346 DOI: 10.1038/s41467-024-53744-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024] Open
Abstract
Enantioselective synthesis governed by chiral catalysts has been extensively developed, but that without any chiral auxiliaries or chiral catalysts is rare, particularly when remote stereogenic centers are involved. Here we report an enantioselectivity of heterochiral coupling in the one-pot reaction of racemic hydrazides with achiral 1,4-bis(isothiocyanine)benzene, yielding preferentially the heterochiral bilateral azapeptides over the homochiral ones. Despite bearing two hydrogen-bonded β-turn structures that allow intramolecular chiral transfer, the bilateral azapeptide products have two chiral centers separated by 14 atoms or 15 bonds, which prevent the direct intramolecular asymmetric communication between the two chiral centers. Interestingly, the heterochiral azapeptides feature intermolecular hydrogen bonding stacking between homochiral β-turns to form a superstructure of alternative M- and P-helices in the crystals. In contrast, the homochiral azapeptide counterparts adopt a β-sheet-like structure, which is less favorable compared to the helical-like superstructure from heterochiral azapeptides, accounting for the favored heterochiral coupling of the one-pot reaction. This work demonstrates enantioselective synthesis involving distant chiral centers through the formation of biomimetic superstructures, opening up new possibilities for the regulation of enantioselectivity.
Collapse
Affiliation(s)
- Xiaosheng Yan
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Jinlian Cao
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Huan Luo
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhao Li
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yirong Mo
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, 27401, USA
| | - Yun-Bao Jiang
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
2
|
Yan X, Weng P, Cao J, Lin K, Qi Y, Wu X, Jiang YB. Simultaneous formation of helical and sheet-like assemblies from short azapeptides enables spontaneous resolution. NANOSCALE 2024; 16:19221-19227. [PMID: 39355943 DOI: 10.1039/d4nr02872d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
As determined by the homochirality of amino acid building units, protein secondary structures α-helix and β-sheet are single-handed chiral superstructures extending in one and quasi-two dimensions, respectively. Synthetic molecular assemblies that mimic the structural homochirality of proteins would provide insights into the origin of biological homochirality and inform the development of chiral separation techniques. Here we fabricated a homochiral 3D assembly consisting of 1D helical and 2D sheet-like assemblies that feature molecular packings resembling α-helix and β-sheet, respectively. This was achieved by using an alanine derivative, a β-turn structured short azapeptide from p-iodobenzoylalanine-based N-amido-N'-phenylthiourea. While N-H⋯SC/OC hydrogen bonds between the β-turn scaffolds afford a 2D pleated sheet-like structure, the head-to-tail C-I⋯π halogen bonds, together with the N-H⋯OC hydrogen bonds, support a 1D helical-like assembly, serving as linkers to connect the 2D sheet-like structures into a 3D superstructure. The two biomimetic assembly modes share the N-H⋯OC hydrogen bonds and can allow 3D homochiral elongation, driving spontaneous resolution of the short azapeptides to generate conglomerate crystals.
Collapse
Affiliation(s)
- Xiaosheng Yan
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China.
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Peimin Weng
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China.
| | - Jinlian Cao
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China.
| | - Kexin Lin
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yuanwei Qi
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xin Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yun-Bao Jiang
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
3
|
Lin K, Weng P, Qi Y, Teng J, Lei Z, Yan X. Evolution of Peptidomimetics-Based Chiral Assemblies of β-Sheet, α-Helix, and Double Helix Involving Chalcogen Bonds. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39420868 DOI: 10.1021/acsami.4c10568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Developing chiral assemblies that mimic biological secondary structures, e.g., protein β-sheet, α-helix, and DNA double helix, is a captivating goal in supramolecular chemistry. Here, we create a family of biomimetic chiral assemblies from alanine-based peptidomimetics, wherein the incorporation of N-terminal 2,1,3-benzoselenadiazole groups enables the rarely utilized chalcogen bonding as the adhesive interaction. While the alanine-based acylhydrazine molecule 1L was designed as a building unit with an extended conformation, simple derivatization of 1L affords folded unilateral N-amidothiourea 2L with one β-turn and bilateral N-amidothiourea 3L with two β-turns. This derivatization leads to the evolution of molecular assemblies from β-sheet organization (1L) to single helix (α-helix mimic, 2L) and ultimately to double helix (3L), illustrating an evolutionary route relating the structures and superstructures. In the case of the double helix formed by 3L, an unexpected cis-form that brings the two β-turns into one side was observed, stabilized via the π···π interaction between two N-terminal 2,1,3-benzoselenadiazole groups. This conformation allows double-crossed N-Se···S═C chalcogen bonds to support a DNA-like P-double helix featuring intrastrand noncovalent interactions and interstrand covalent linkages, surviving in both the solid state and in dilute acetonitrile solution phase.
Collapse
Affiliation(s)
- Kexin Lin
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Peimin Weng
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
| | - Yuanwei Qi
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Jinkui Teng
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Zhikun Lei
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Xiaosheng Yan
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen 361005, China
| |
Collapse
|
4
|
Wen X, Wang F, Du S, Jiang Y, Zhang L, Liu M. Achiral Solvent Inversed Helical Pathway and Cosolvent Controlled Excited-State "Majority Rule" in Enantiomeric Dansulfonamide Assemblies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401954. [PMID: 38733233 DOI: 10.1002/smll.202401954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/26/2024] [Indexed: 05/13/2024]
Abstract
Achiral solvents are commonly utilized to induce the self-assembly of chiral molecules. This study demonstrates that achiral solvents can trigger helicity inversion in the assemblies of dansyl amphiphiles and control the excited-state "majority rule" in assemblies composed of pure enantiomers, through variation of the cosolvent ratio. Specifically, enantiomers of dansyl amphiphiles self-assemble into helical structures with opposite handedness in methanol (MeOH) and acetonitrile (MeCN), together with inversed circular dichroism and circularly polarized luminescence (CPL) signals. When a mixture of MeOH and MeCN is employed, the achiral cosolvents collectively affect the CPL of the assemblies in a way similar to that of "mixed enantiomers". The dominant cosolvent governs the CPL signal. As the cosolvent composition shifts from pure MeCN to MeOH, the CPL signals undergo a significant inversion and amplification, with two maxima observed at ≈20% MeOH and 20% MeCN. This study deepens the comprehension of how achiral solvents modulate helical nanostructures and their excited-state chiroptical properties.
Collapse
Affiliation(s)
- Xin Wen
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Fulin Wang
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing, 100190, P. R. China
| | - Sifan Du
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing, 100190, P. R. China
| | - Yuqian Jiang
- Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Li Zhang
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing, 100190, P. R. China
| | - Minghua Liu
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
5
|
Liu CZ, Zhang C, Li ZY, Chen J, Wang T, Zhang XK, Yan M, Zhai B. Multiple non-covalent-interaction-directed supramolecular double helices: the orthogonality of hydrogen, halogen and chalcogen bonding. Chem Commun (Camb) 2024; 60:6063-6066. [PMID: 38780308 DOI: 10.1039/d4cc01472c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
In this study, a benzoselenadiazole- and pyridine-bifunctionalized hydrogen-bonded arylamide foldamer was synthesized. A co-crystallization experiment with 1,4-diiodotetrafluorobenzene showed that a new type of supramolecular double helices, which were induced by three orthogonal interactions, namely, three-center hydrogen bonding (O⋯H⋯O), I⋯N halogen bonding and Se⋯N chalcogen bonding, have been constructed in the solid state. This work presents a novel instance of multiple non-covalent interactions that work together to construct supramolecular architectures.
Collapse
Affiliation(s)
- Chuan-Zhi Liu
- Engineering Research Centre for Optoelectronic Functional Materials of Henan Province, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China.
| | - Chi Zhang
- Engineering Research Centre for Optoelectronic Functional Materials of Henan Province, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China.
| | - Zhong-Yi Li
- Engineering Research Centre for Optoelectronic Functional Materials of Henan Province, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China.
| | - Jiale Chen
- Engineering Research Centre for Optoelectronic Functional Materials of Henan Province, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China.
| | - Tonglu Wang
- Engineering Research Centre for Optoelectronic Functional Materials of Henan Province, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China.
| | - Xiang-Kun Zhang
- Engineering Research Centre for Optoelectronic Functional Materials of Henan Province, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China.
| | - Meng Yan
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Bin Zhai
- Engineering Research Centre for Optoelectronic Functional Materials of Henan Province, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China.
| |
Collapse
|
6
|
Cao J, Weng P, Qi Y, Lin K, Yan X. Noncovalent interaction network of chalcogen, halogen and hydrogen bonds for supramolecular β-sheet organization. Chem Commun (Camb) 2024; 60:1484-1487. [PMID: 38224140 DOI: 10.1039/d3cc05539f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
An alanine-based bilateral building block, linked by 2,5-thiophenediamide motifs and equipped with C-terminal 4-iodoaniline groups, was designed, allowing a noncovalent interaction network consisting of intramolecular chalcogen bonds and intermolecular halogen/hydrogen bonds, which cooperatively maintain a supramolecular β-sheet organization in the solid state, as well as in dilute CH3CN solution with a high g factor of -0.017.
Collapse
Affiliation(s)
- Jinlian Cao
- The Higher Educational Key Laboratory for Flexible Manufacturing Equipment Integration of Fujian Province, Xiamen Institute of Technology, Xiamen 361021, China
| | - Peimin Weng
- Peking University Yangtze Delta Institute of Optoelectronics, 226010, Nantong, Jiangsu, China
| | - Yuanwei Qi
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, 361102, China.
| | - Kexin Lin
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, 361102, China.
| | - Xiaosheng Yan
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
7
|
Lin X, Kou B, Cao J, Weng P, Yan X, Li Z, Jiang Y. Spontaneous Resolution of Helical Building Blocks through the Formation of Homochiral Helices in Two Dimensions. Angew Chem Int Ed Engl 2022; 61:e202205914. [DOI: 10.1002/anie.202205914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Xiang Lin
- Department of Chemistry College of Chemistry and Chemical Engineering The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM Xiamen University Xiamen 361005 China
| | - Bohan Kou
- Department of Chemistry College of Chemistry and Chemical Engineering The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM Xiamen University Xiamen 361005 China
| | - Jinlian Cao
- Department of Chemistry College of Chemistry and Chemical Engineering The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM Xiamen University Xiamen 361005 China
| | - Peimin Weng
- Department of Chemistry College of Chemistry and Chemical Engineering The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM Xiamen University Xiamen 361005 China
| | - Xiaosheng Yan
- Department of Chemistry College of Chemistry and Chemical Engineering The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM Xiamen University Xiamen 361005 China
- School of Pharmaceutical Sciences Xiamen University Xiamen 361102 China
| | - Zhao Li
- Department of Chemistry College of Chemistry and Chemical Engineering The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM Xiamen University Xiamen 361005 China
| | - Yun‐Bao Jiang
- Department of Chemistry College of Chemistry and Chemical Engineering The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM Xiamen University Xiamen 361005 China
| |
Collapse
|
8
|
Lin X, Kou B, Cao J, Weng P, Yan X, Li Z, Jiang YB. Spontaneous Resolution of Helical Building Block through the Formation of Homochiral Helices in Two Dimensions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiang Lin
- Xiamen University Department of Chemistry 361005 Xiamen CHINA
| | - Bohan Kou
- Xiamen University Department of Chemistry 361005 Xiamen CHINA
| | - Jinlian Cao
- Xiamen University Department of Chemistry 361005 Xiamen CHINA
| | - Peimin Weng
- Xiamen University Department of Chemistry 361005 Xiamen CHINA
| | - Xiaosheng Yan
- Xiamen University Department of Chemistry 422 Siming South Street 361005 Xiamen CHINA
| | - Zhao Li
- Xiamen University Department of Chemistry 361005 Xiamen CHINA
| | - Yun-Bao Jiang
- Xiamen University Department of Chemistry 422 South Siming Road 361005 Xiamen CHINA
| |
Collapse
|
9
|
Yan X, Weng P, Shi D, Jiang YB. Supramolecular helices from helical building blocks via head-to-tail intermolecular interactions. Chem Commun (Camb) 2021; 57:12562-12574. [PMID: 34781336 DOI: 10.1039/d1cc04991g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Supramolecular helices from helical building blocks represent an emerging analogue of the α-helix. In cases where the helicity of the helical building block is well propagated, the head-to-tail intermolecular interactions that lead to the helix could be enhanced to promote the formation and the stability of the supramolecular helix, wherein homochiral elongation dominates and functional helical channel structures could also be generated. This feature article outlines the supramolecular helices built from helical building blocks, i.e., helical aromatic foldamers and helical short peptides that are held together by intermolecular π-π stacking, hydrogen/halogen/chalcogen bonding, metal coordination, dynamic covalent bonding and solvophobic interactions, with emphasis on the influence of efficient propagation of helicity during assembly, favouring homochirality and channel functions.
Collapse
Affiliation(s)
- Xiaosheng Yan
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China.
| | - Peimin Weng
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China.
| | - Di Shi
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China.
| | - Yun-Bao Jiang
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
10
|
Shi D, Cao J, Weng P, Yan X, Li Z, Jiang YB. Chalcogen bonding mediates the formation of supramolecular helices of azapeptides in crystals. Org Biomol Chem 2021; 19:6397-6401. [PMID: 34251014 DOI: 10.1039/d1ob01053k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To explore whether chalcogen bonding was able to drive the formation of supramolecular helices, alanine-based azapeptides containing a β-turn structure, with a thiophene group, respectively, incorporated in the N- or C-terminus, were employed as helical building blocks. While the former derivative formed a supramolecular M-helix via intermolecular SS chalcogen bonding in crystals, the latter formed P-helix via intermolecular SO chalcogen bonding.
Collapse
Affiliation(s)
- Di Shi
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China.
| | - Jinlian Cao
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China.
| | - Peimin Weng
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China.
| | - Xiaosheng Yan
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China.
| | - Zhao Li
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China.
| | - Yun-Bao Jiang
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China.
| |
Collapse
|