1
|
Li C, Li T, Guo M, Meng T, Peng J, Liu S, Wang Q, Xie B, Dai Z, Chen J. A novel aptasensor based endogenous enzyme-powered DNA walker for ATP imaging in specific living cells. Chem Commun (Camb) 2024; 60:11782-11785. [PMID: 39324355 DOI: 10.1039/d4cc04681a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Highly sensitive and specific imaging of ATP in living cells remains a challenge. Here, a novel aptasensor based endogenous enzyme-powered DNA walker for imaging ATP was proposed. The strategy leverages the highly expressed APE1 in tumor cells as the driving force of the DNA walker, achieving high sensitivity and superior imaging contrast. The method can detect ATP as low as 3.43 μM within 1 h. The approach can also effectively monitor intracellular ATP expression fluctuations and successfully differentiate between normal and cancer cells with high contrast.
Collapse
Affiliation(s)
- Chunrong Li
- Qiannan Medical College for Nationalities, Duyun, 558000, China.
| | - Tong Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Mingqi Guo
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Tiehong Meng
- Qiannan Medical College for Nationalities, Duyun, 558000, China.
| | - Jing Peng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Simin Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Qianyu Wang
- Qiannan Medical College for Nationalities, Duyun, 558000, China.
| | - Baoping Xie
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Zong Dai
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
| | - Jun Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
2
|
Peng C, Leng M, Gao Y, Feng Q, Miao X. DNA tetrahedral molecular sieve for size-selective fluorescence sensing of miRNA 21 in living cells. Talanta 2024; 276:126218. [PMID: 38759363 DOI: 10.1016/j.talanta.2024.126218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/09/2024] [Accepted: 05/05/2024] [Indexed: 05/19/2024]
Abstract
In situ monitoring of intracellular microRNAs (miRNAs) often encounters the challenges of surrounding complexity, coexistence of precursor miRNAs (pre-miRNAs) and the degradation of biological enzyme in living cells. Here, we designed a novel probe encapsulated DNA tetrahedral molecular sieve (DTMS) to realize the size-selective detection of intracellular miRNA 21 that can avoid the interference of pre-miRNAs. In such strategy, quencher (BHQ-1) labeled probe DNA (S6-BHQ 1) was introduced into the inner cavity of fluorophore (FAM) labeled DNA tetrahedral scaffolds (DTS) to prepare DTMS, making the FAM and BHQ-1 closely proximate, and resulting the sensor in a "signal-off" state. In the presence of miRNA 21, strand displacement reaction happened to form more stable DNA double-stranded structure, accompanied by the release of S6-BHQ 1 from the inner cavity of DTMS, making the sensor in a "signal-on" state. The DTMS based sensing platform can then realized the size-selective detection of miRNA 21 with a detection limit of 3.6 pM. Relying on the mechanical rigidity of DTS and the encapsulation of DNA probe using DTMS, such proposed method achieved preferable reproducibility and storage stability. Moreover, this sensing system exhibited good performance for monitoring the change of intracellular miRNA 21 level during the treatment with miRNA-related drugs, demonstrating great potential for biological studies and accurate disease diagnosis.
Collapse
Affiliation(s)
- Chenxu Peng
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Mingyu Leng
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Yongguang Gao
- Department of Radiology, Xuzhou Central Hospital, 199 Jiefang Road, Xuzhou, Jiangsu, China.
| | - Qiumei Feng
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Xiangmin Miao
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
3
|
Han H, Park C, Lee CY, Ahn JK. Background-filtered telomerase activity assay with cyclic DNA cleavage amplification. NANOSCALE 2023; 15:16669-16674. [PMID: 37801026 DOI: 10.1039/d3nr04132h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Overexpression of telomerase incites the abnormal proliferation of cancer cells. Thus, it has been regarded as a cancer biomarker and a potential therapeutic target. Existing assays suggest a promising sensing scheme to detect telomerase activity. However, they are complicated in terms of assay preparation and implementation. We herein report a Quenching-Exempt invader Signal Amplification Test, termed 'QUEST'. The assay leverages on a high turnover, specific cleaving enzyme, flap endonuclease I (FEN1), and graphene oxide (GO) for background (BG) filtering. In response to the target, FEN1 significantly boosts the signal with invader signal amplification. To distinguish the target signal, GO filters out the BG. It captures residual reporter invader probes (RP) to quench undesired signals. QUEST is straightforward without any pre-preparatory steps and washing/separation. Its probe design is simple and cost-effective. With QUEST, we investigated telomerase activities in various cell lines. Notably, we discriminated cancer cell lines from normal cell lines. In addition, a candidate inhibitor for telomerase was screened, which showed the promising potential of QUEST in real applications.
Collapse
Affiliation(s)
- Hyogu Han
- Material & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Korea
- Department of Chemistry, Gangneung-Wonju National University, Gangneung 25457, Korea
| | - Chihyun Park
- Daejeon District Office, National Forensic Service, Daejeon 34054, Korea
| | - Chang Yeol Lee
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Jun Ki Ahn
- Material & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Korea
| |
Collapse
|
4
|
Ma H, Chen L, Lv J, Yan X, Li Y, Xu G. The rate-limiting procedure of 3D DNA walkers and their applications in tandem technology. Chem Commun (Camb) 2023; 59:10330-10342. [PMID: 37615403 DOI: 10.1039/d3cc02597g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
DNA walkers, artificial dynamic DNA nanomachines, can mimic actin to move rapidly along a predefined nucleic acid track. They can generally be classified as one- (1D), two- (2D), and three-dimensional (3D) DNA walkers. In particular, 3D DNA walkers demonstrate amazing sustainable walking ability, strong enrichment ability, and fantastic signal amplification ability. In light of these, 3D DNA walkers have been widely used in fields such as biosensors, bioanalysis and cell imaging. Most notably, the strong compatibility of 3D DNA walkers allows their integration with a range of amplification strategies, effectively enhancing signal transduction and amplifying biosensor sensing signals. Herein, we first systematically expound the walking principle of the 3D walkers in this review. Then, by presenting representative examples, the research direction of 3D walkers in recent years is discussed. Furthermore, we also categorize and evaluate diverse tandem signal amplification strategies in 3D walkers. Finally, the challenges and development trends of 3D DNA walkers in the emerging field of analysis are carefully discussed. It is believed that this work can provide new ideas for researchers to quickly understand 3D DNA walkers and their applications in diverse biosensors.
Collapse
Affiliation(s)
- Hongmin Ma
- Department of Clinical Laboratory, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang 215600, China.
| | - Long Chen
- Department of Clinical Laboratory, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang 215600, China.
| | - Jingnan Lv
- The Second Affiliated People's Hospital of Soochow University, Suzhou 215008, China
| | - Xiaoyu Yan
- Guang'an Vocational & Technical College, Sichuan 638000, China
| | - Yonghao Li
- Department of Clinical Laboratory, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang 215600, China.
| | - Guoxin Xu
- Department of Clinical Laboratory, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang 215600, China.
| |
Collapse
|
5
|
García JF, Reguera D, Valls A, Aviñó A, Dominguez A, Eritja R, Gargallo R. Detection of pyrimidine-rich DNA sequences based on the formation of parallel and antiparallel triplex DNA and fluorescent silver nanoclusters. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 297:122752. [PMID: 37084680 DOI: 10.1016/j.saa.2023.122752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
In this work, the use of DNA-stabilized fluorescent silver nanoclusters for the detection of target pyrimidine-rich DNA sequences by formation of parallel and antiparallel triplex structures is studied by molecular fluorescence spectroscopy. In the case of parallel triplexes, the probe DNA fragments are Watson-Crick stabilized hairpins, and whereas in the case of antiparallel triplexes, the probe fragments are reverse-Hoogsteen clamps. In all cases, the formation of the triplex structures has been assessed by means of polyacrylamide gel electrophoresis, circular dichroism, and molecular fluorescence spectroscopies, as well as multivariate data analysis methods. The results have shown that it is possible the detection of pyrimidine-rich sequences with an acceptable selectivity by using the approach based on the formation of antiparallel triplex structures.
Collapse
Affiliation(s)
- Juan Fernando García
- Dept. of Chemical Engineering and Analytical Chemistry, University of Barcelona, Marti i Franquès 1-11, E-08028 Barcelona, Spain
| | - David Reguera
- Dept. of Chemical Engineering and Analytical Chemistry, University of Barcelona, Marti i Franquès 1-11, E-08028 Barcelona, Spain
| | - Andrea Valls
- Dept. of Chemical Engineering and Analytical Chemistry, University of Barcelona, Marti i Franquès 1-11, E-08028 Barcelona, Spain
| | - Anna Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), CIBER-BBN, Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Arnau Dominguez
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), CIBER-BBN, Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), CIBER-BBN, Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Raimundo Gargallo
- Dept. of Chemical Engineering and Analytical Chemistry, University of Barcelona, Marti i Franquès 1-11, E-08028 Barcelona, Spain.
| |
Collapse
|
6
|
Jiang Y, Chen X, Feng N, Miao P. Electrochemical Aptasensing of SARS-CoV-2 Based on Triangular Prism DNA Nanostructures and Dumbbell Hybridization Chain Reaction. Anal Chem 2022; 94:14755-14760. [PMID: 36239383 PMCID: PMC9578371 DOI: 10.1021/acs.analchem.2c03401] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/05/2022] [Indexed: 12/03/2022]
Abstract
Development of convenient, accurate, and sensitive methods for rapid screening of severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) infection is highly desired. In this study, we have developed a facile electrochemical aptasensor for the detection of the SARS-CoV-2 S1 protein amplified by dumbbell hybridization chain reaction (DHCR). A triangular prism DNA (TPDNA) nanostructure is first assembled and modified at the electrode interface. Due to the multiple thiol anchors, the immobilization is quite stable. The TPDNA nanostructure also provides an excellent scaffold for better molecular recognition efficiency on the top single-strand region (DHP0). The aptamer sequence toward the SARS-CoV-2 S1 protein is previously localized by partial hybridization with DHP0. In the presence of the target protein, the aptamer sequence is displaced and DHP0 is exposed. After further introduction of the fuel stands of DHCR, compressed DNA linear assembly occurs, and the product can be stacked on the TPDNA nanostructure for the enrichment of electrochemical species. This electrochemical method successfully detects the target protein in clinical samples, which provides a simple, robust, and accurate platform with great potential utility.
Collapse
Affiliation(s)
- Yu Jiang
- The
Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical
University, Wuxi214000, China
| | - Xifeng Chen
- Suzhou
Institute of Biomedical Engineering and Technology, Chinese Academy
of Sciences, Suzhou215163, China
| | - Ninghan Feng
- The
Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical
University, Wuxi214000, China
| | - Peng Miao
- Suzhou
Institute of Biomedical Engineering and Technology, Chinese Academy
of Sciences, Suzhou215163, China
| |
Collapse
|
7
|
Xi S, Wang L, Cheng M, Hu M, Liu R, Dong Y. Developing a DNA logic gate nanosensing platform for the detection of acetamiprid. RSC Adv 2022; 12:27421-27430. [PMID: 36276016 PMCID: PMC9513691 DOI: 10.1039/d2ra04794b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022] Open
Abstract
This paper reports a novel fluorescence and colorimetric dual-signal-output DNA aptamer based sensor for the detection of acetamiprid residue. Acetamiprid is a new systemic broad-spectrum insecticide with high insecticidal efficiency that is widely used worldwide, but there is a risk of adverse neurological reactions in humans and animals. The dual-mode output principle designed in this paper, consisting of a fluorescence signal and colorimetric signal, is based on the relevant reaction of the special domain of a G-quadruplex, bidding farewell to a classical single-signal output, with a target-recognition cycle used to complete signal amplification through a hybridization chain reaction. Upgraded detection sensitivity and the qualitative and semi-quantitative detection of acetamiprid are achieved based on the fluorescence signal output and visual discrimination observations during colorimetric experiments. This model was applied to the determination of acetamiprid residue in fruits and vegetables. The dual-detection platform further reduced systematic error, with a detection limit of 27.7 pM. When applied in a comparative detection study using three different pesticides, the system shows excellent discrimination specificity and it performs well in actual sample detection and has a fast response time. Designing DNA logic gates that operate in the presence of targets and molecular-switch-based detection platforms also involves the intersection of biology and computational modeling, providing new ideas for biological platforms.
Collapse
Affiliation(s)
- Sunfan Xi
- Department of Life Science, Shaanxi Normal University Xi'an 710119 China
| | - Luhui Wang
- Department of Life Science, Shaanxi Normal University Xi'an 710119 China
| | - Meng Cheng
- Department of Life Science, Shaanxi Normal University Xi'an 710119 China
| | - Mengyang Hu
- Department of Computer Science, Shaanxi Normal University Xi'an 710119 China
| | - Rong Liu
- Department of Computer Science, Shaanxi Normal University Xi'an 710119 China
| | - Yafei Dong
- Department of Life Science, Shaanxi Normal University Xi'an 710119 China
| |
Collapse
|
8
|
Liu JX, Sun XM, Liu D, Liu YH, Li CY. Smart NIR light-gated CRISPR/Cas12a fluorescent biosensor with boosted biological delivery and trans-cleavage activity for high-performance in vivo operation. Biosens Bioelectron 2022; 216:114646. [DOI: 10.1016/j.bios.2022.114646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/29/2022] [Accepted: 08/17/2022] [Indexed: 11/02/2022]
|
9
|
Li CY, Liu JX, Yuheng L, Gao JL, Chen YL, He JW, Xin MK, Liu D, Zheng B, Sun X. Upconversion Luminescence-Initiated and GSH-Responsive Self-Driven DNA Motor for Automatic Operation in Living Cells and In Vivo. Anal Chem 2022; 94:5450-5459. [PMID: 35324151 DOI: 10.1021/acs.analchem.2c00830] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In light of the worthy design flexibility and the good signal amplification capacity, the recently developed DNA motor (especially the DNA walker)-based fluorescent biosensors can offer an admirable choice for realizing bioimaging. However, this attractive biosensing strategy not only has the disadvantage of uncontrollable initiation but also usually demands the supplement of exogenous driving forces. To handle the above obstacles, some rewarding solutions are proposed here. First, on the surface of an 808 nm near-infrared light-excited low-heat upconversion nanoparticle, a special ultraviolet upconversion luminescence-initiated three-dimensional (3D) walking behavior is performed by embedding a photocleavage linker into the sensing elements, and such light-controlled target recognition can perfectly overcome the pre-triggering of the biosensor during the biological delivery to significantly boost the sensing precision. After that, a peculiar self-driven walking pattern is constructed by employing MnO2 nanosheets as an additional nanovector to physically absorb the sensing frame, for which the reduction of the widespread glutathione in the biological medium can bring about sufficient self-supplied Mn2+ to guarantee the walking efficiency. By selecting an underlying next-generation broad-spectrum cancer biomarker (survivin messenger RNA) as the model target, we obtain that the newly formed autonomous 3D DNA motor shows a commendable sensitivity (where the limit of detection is down to 0.51 pM) and even an outstanding specificity for distinguishing single-base mismatching. Beyond this sound assay performance, our sensing approach is capable of working as a powerful imaging platform for accurately operating in various living specimens such as cells and bodies, showing a favorable diagnostic ability for cancer care.
Collapse
Affiliation(s)
- Cheng-Yu Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, People's Republic of China
| | - Jun-Xian Liu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, People's Republic of China
| | - Liu Yuheng
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, People's Republic of China
| | - Jia-Ling Gao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, People's Republic of China
| | - Ya-Ling Chen
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, People's Republic of China
| | - Jing-Wei He
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, People's Republic of China
| | - Meng-Kun Xin
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, People's Republic of China
| | - Da Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Bei Zheng
- Westlake Institute for Advanced Study, School of Life Sciences, Westlake University, Hangzhou 310024, People's Republic of China
| | - Xiaoming Sun
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, People's Republic of China
| |
Collapse
|
10
|
Díaz-Ayala R, López-Nieves M, Colón Berlingeri ES, Cabrera CR, Cunci L, González CI, Escobar PF. Test Strip Platform Spin-Off for Telomerase Activity Detection: Development of an Electrochemical Biosensor. ACS OMEGA 2022; 7:9964-9972. [PMID: 35356692 PMCID: PMC8944542 DOI: 10.1021/acsomega.2c00713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Telomerase overexpression has been associated directly with cancer, and the enzyme itself is recognized within the scientific community as a cancer biomarker. BIDEA's biosensing strip (BBS) is an innovative technology capable of detecting the presence of telomerase activity (TA) using electrochemical impedance spectroscopy (EIS). This BBS is an interdigital gold (GID) electrode array similar in size and handling to a portable glucose sensor. For the detection of the biomarker, BBS was modified by the immobilization of a telomere-like single strand DNA (ssDNA) on its surface. The sensor was exposed to telomerase-positive extract from commercially available cancer cells, and the EIS spectra were measured. Telomerase recognizes the sequence of this immobilized ssDNA probe on the BBS, and the reverse transcription process that occurs in cancer cells is replicated, resulting in the ssDNA probe elongation. This surface process caused by the presence of TA generates changes in the capacitive process on the electrode array microchip surface, which is followed by EIS as the sensing tool and correlated with the presence of cancer cells. The telomerases' total cell extraction protocol results demonstrate significant changes in the charge-transfer resistance (R ct) change rate after exposure to telomerase-positive extract with a detection limit of 2.94 × 104 cells/mL. Finally, a preliminary study with a small set of "blind" uterine biopsy samples suggests the feasibility of using the changes in the R ct magnitude change rate (Δ(ΔR ct/R cti)/Δt) to distinguish positive from negative endometrial adenocarcinoma samples by the presence or absence of TA.
Collapse
Affiliation(s)
- Ramonita Díaz-Ayala
- BIDEA
LLC, Molecular Science Research Center, Lab 2-43, 1390 Ave. Ponce de León, San Juan 002926-2614, Puerto Rico
| | - Marjorie López-Nieves
- BIDEA
LLC, Molecular Science Research Center, Lab 2-43, 1390 Ave. Ponce de León, San Juan 002926-2614, Puerto Rico
| | - Etienne S. Colón Berlingeri
- BIDEA
LLC, Molecular Science Research Center, Lab 2-43, 1390 Ave. Ponce de León, San Juan 002926-2614, Puerto Rico
| | - Carlos R. Cabrera
- BIDEA
LLC, Molecular Science Research Center, Lab 2-43, 1390 Ave. Ponce de León, San Juan 002926-2614, Puerto Rico
- Department
of Chemistry and Biochemistry, University
of Texas at El Paso, 500 W. University Ave., El Paso, Texas 79968, United
States
| | - Lisandro Cunci
- BIDEA
LLC, Molecular Science Research Center, Lab 2-43, 1390 Ave. Ponce de León, San Juan 002926-2614, Puerto Rico
- School
of Natural Sciences and Technology, Universidad
Ana G. Méndez, Gurabo Campus, Gurabo, Puerto Rico 00778, United States
| | - Carlos I. González
- BIDEA
LLC, Molecular Science Research Center, Lab 2-43, 1390 Ave. Ponce de León, San Juan 002926-2614, Puerto Rico
- Department
of Biology, University of Puerto Rico, Río Piedras Campus, San Juan 00931-3346, Puerto Rico
| | - Pedro F. Escobar
- Department
of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Puerto Rico, School of Medicine, Medical Sciences Campus, San Juan 00926, Puerto Rico
| |
Collapse
|
11
|
Pan J, Deng F, Liu Z, Shi G, Chen J. Toehold-Mediated Cascade Catalytic Assembly for Mycotoxin Detection and Its Logic Applications. Anal Chem 2022; 94:3693-3700. [PMID: 35176850 DOI: 10.1021/acs.analchem.1c05485] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this work, an enzyme-free biosensor is reported for mycotoxin detection based on a toehold-mediated catalytic hairpin assembly (CHA) and a DNAzyme-cascaded hydrolysis reaction. In the presence of a mycotoxin, the recognition between an aptamer and the mycotoxin releases the trigger DNA. The trigger DNA initiates the toehold-mediated CHA, generating large amounts of partial duplex B/C with four toeholds, which can be used to assemble the DNAzyme-cascaded hydrolysis reaction. Furthermore, through a collaborative autoassembly reaction among the B/C duplex, DNA1, and DNA2, supramolecular nanostructures corresponding to Mg2+-dependent DNAzymes can be formed. With the incubation of Mg2+, the dual-modified (TAMRA/BHQ2) substrate strand DNA2 will be cleaved into two fragments, yielding a high TAMRA fluorescence signal for mycotoxin testing. Under optimal conditions, the sensing system was ultrasensitive and showed low detection limits of 0.2 pM for ochratoxin A (OTA), 0.13 pM for aflatoxin B1 (AFB1), and 0.17 pM for zearalenone (ZEN). The mycotoxin aptasensor also exhibited high selectivity and was successfully applied for the quantitative analysis of OTA, AFB1, and ZEN in wine samples. Due to the advantages of flexibility and versatility, this mycotoxin platform was used to fabricate several concatenated logic gates including "AND-INHIBIT", "INHIBIT-OR", "OR-AND", and "OR-INHIBIT" logic biocomputings. Such multiple functions of the logic system provided a universal sensing strategy for the intelligent detection of multiplex mycotoxins, demonstrating considerable potential in food safety and environmental monitoring.
Collapse
Affiliation(s)
- Jiafeng Pan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.,National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Fang Deng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.,National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Zhi Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Gu Shi
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Junhua Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
12
|
Huang W, Zhan D, Xie Y, Li X, Lai G. Dual CHA-mediated high-efficient formation of a tripedal DNA walker for constructing a novel proteinase-free dual-mode biosensing strategy. Biosens Bioelectron 2022; 197:113708. [PMID: 34763154 DOI: 10.1016/j.bios.2021.113708] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/30/2021] [Accepted: 10/12/2021] [Indexed: 12/14/2022]
Abstract
DNA walkers have been recognized as a type of powerful signal amplification tool for biosensors, but how to adopt a proper strategy to increase their amplification efficiency is still highly desirable. Herein we design a dual-catalytic hairpin assembly (CHA)-mediated strategy for the high-efficient formation of a tripedal Mg2+-dependent DNAzyme (MNAzyme)-DNA walker, and thus develop a novel proteinase-free dual-mode biosensing method for the kanamycin (Kana) antibiotic assay. The first CHA is initiated by a target-biorecognition reaction, which can produce the DNA walker and also induce the target recycling. The second CHA is initiated by a special base sequence designed as a one-half substrate of the MNAzyme. Upon the first CHA-triggered DNA walking at a magnetic bead (MB) track, this "pseudo-target" sequence can be released to induce another CHA-cycle for the formation of the same DNA walker. Meanwhile, the other one-half substrate strand exposed on the MB surface will trigger the quantitative hybridization chain reaction (HCR)-assembly of a G-quadruplex DNAzyme (G-DNAzyme)-enriched double-stranded DNA polymer. So the enzymatic reaction of G-DNAzymes enabled the convenient colorimetric and photoelectrochemical dual-mode signal transduction of the method. Due to the dual-CHA facilitation to the tripedal and three-dimensional DNA walking and synergetic signal amplification of HCR, this method exhibits very low detection limits of 9.4 and 0.55 fg mL-1, respectively. In combination with its wide linear range, automated manipulation, and excellent selectivity, repeatability and reliability, the proposed method is expected to be used for the convenient semiquantitative screening and accurate determination of possible antibiotic residues in complicated matrices.
Collapse
Affiliation(s)
- Wan Huang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Danyan Zhan
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Yiming Xie
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Xin Li
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Guosong Lai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China.
| |
Collapse
|
13
|
Zada S, Lu H, Dai W, Tang S, Khan S, Yang F, Qiao Y, Fu P, Dong H, Zhang X. Multiple amplified microRNAs monitoring in living cells based on fluorescence quenching of Mo 2B and hybridization chain reaction. Biosens Bioelectron 2022; 197:113815. [PMID: 34814033 DOI: 10.1016/j.bios.2021.113815] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/10/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023]
Abstract
Imaging intracellular microRNAs (miRNAs) demonstrated an essential role in exposing their biological and pathological functions. However, the detection of sequence-specific miRNAs in living cells remains a key challenge. Herein, a facile amplified multiple intracellular miRNAs imaging platform was constructed based on Mo2B nanosheets (NSs) fluorescence (FL) quenching and hybridization chain reaction (HCR). The Mo2B NSs demonstrated strong interaction with the hairpin probes (HPs), ssDNA loop, and excellent multiple FL dyes quenching performance, achieving ultralow background signal. After transfection, the HPs recognized specific targets miRNAs, the corresponding HCR was triggered to produce tremendous DNA-miRNA duplex helixes, which dissociated from the surface of the Mo2B NSs to produce strong FL for miRNAs detection. It realized to image multiple miRNAs biomarkers in different cells to discriminate cancer cells from normal cells owing to the excellent sensitivity, and the regulated expression change of miRNAs in cancer cells was also successfully monitored. The facile and versatile Mo2B-based FL quenching platform open an avenue to profile miRNAs expression pattern in living cells, and has great applications in miRNAs based biological and biomedical research.
Collapse
Affiliation(s)
- Shah Zada
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing, 100083, PR China
| | - Huiting Lu
- School of Chemistry and Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing, 100083, PR China
| | - Wenhao Dai
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing, 100083, PR China
| | - Songsong Tang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing, 100083, PR China
| | - Sikandar Khan
- Department of Biotechnology, Shaheed Benazir Bhutto University, Sheringal, KPK, Pakistan
| | - Fan Yang
- College of Basic Medical Sciences, Shanxi University, Taiyuan, 030001, PR China
| | - Yuchun Qiao
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing, 100083, PR China
| | - Pengcheng Fu
- State Key Laboratory of Marine Resource Utilization in South China Sea Hainan University, 58 Renmin Avenue, Meilan District Haikou, Hainan Province, 570228, PR China
| | - Haifeng Dong
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing, 100083, PR China; Marshall Laboratory of Biomedical Engineering Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen, Guangdong, 518060, PR China.
| | - Xueji Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing, 100083, PR China; Marshall Laboratory of Biomedical Engineering Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen, Guangdong, 518060, PR China.
| |
Collapse
|
14
|
Jiang Y, Guo Z, Wang M, Cui J, Miao P. Construction of fluorescence logic gates responding to telomerase and miRNA based on DNA-templated silver nanoclusters and the hybridization chain reaction. NANOSCALE 2022; 14:612-616. [PMID: 34981798 DOI: 10.1039/d1nr05622k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this study, we have developed novel fluorescence logic gates for simultaneous analysis of telomerase activity and miRNA. An imperfectly complementary duplex is assembled which can be destroyed by telomerase catalyzed extension or miRNA mediated strand displacement. The released single-stranded DNA further initiates the subsequent hybridization chain reaction. The output response of the OR gate originates from fuel strand-templated silver nanoclusters (AgNCs). On the other hand, a three-way junction is constructed for the AND gate, which can be destroyed in the presence of miRNA and telomerase. The finally released DNA is also applied to trigger the hybridization chain reaction for the generation of a fluorescence response. The constructed logic gates are sensitive and reliable in the analysis of telomerase and miRNA for potential practical applications.
Collapse
Affiliation(s)
- Yiting Jiang
- University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.
| | - Zhenzhen Guo
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.
- Ji Hua Laboratory, Foshan 528200, China
| | | | - Jinjiang Cui
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.
- Ji Hua Laboratory, Foshan 528200, China
| | - Peng Miao
- University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.
| |
Collapse
|
15
|
Li Z, Li Q, Wu Y, Yuan K, Shi M, Li Y, Meng HM, Li Z. Multivalent self-assembled nano string lights for tumor-targeted delivery and accelerated biomarker imaging in living cells and in vivo. Analyst 2022; 147:811-818. [DOI: 10.1039/d1an02363b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multivalent self-assembled nano string lights for tumor-targeted delivery with high efficiency and accelerated biomarker imaging in living cells and in vivo.
Collapse
Affiliation(s)
- Zhijun Li
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Qiannan Li
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Yanan Wu
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Kun Yuan
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Mingqing Shi
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Yiwei Li
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Hong-Min Meng
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Zhaohui Li
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
16
|
Fan H, He Y, Shu Q, Wang X, Cui H, Hu Y, Wei G, Dong H, Zhang J, Hong N. Three-dimensional self-powered DNA walking machine based on catalyzed hairpin assembly energy transfer strategy. Anal Biochem 2021; 639:114529. [PMID: 34929152 DOI: 10.1016/j.ab.2021.114529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 02/01/2023]
Abstract
Herein, catalyzed hairpin assembly is implemented as an automated strategy, which can respond in living cells to detect specific target DNA. Using the principle of catalyzed hairpin assembly (CHA), the auxiliary chain connects the fuel and starting chain to form a triple-stranded DNA to complete such a single system. Hundreds of single systems are modified on gold nanoparticles as DNA orbitals. Through the specific recognition of base complementation, the target DNA can realize the automatic walking of the three-dimensional fluorescence machine. This is a novel walking nanomachine that has a simple structure and can independently exist in cells to achieve automatic operation.
Collapse
Affiliation(s)
- Hao Fan
- Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, JiangXi, 330004, China
| | - Yani He
- Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, JiangXi, 330004, China
| | - Qingxia Shu
- Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, JiangXi, 330004, China
| | - Xinru Wang
- Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, JiangXi, 330004, China
| | - Hanfeng Cui
- Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, JiangXi, 330004, China
| | - Yuping Hu
- Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, JiangXi, 330004, China
| | - Guobing Wei
- Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, JiangXi, 330004, China
| | - Huanhuan Dong
- Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, JiangXi, 330004, China.
| | - Jing Zhang
- Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, JiangXi, 330004, China.
| | - Nian Hong
- Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, JiangXi, 330004, China
| |
Collapse
|