1
|
Liu H, Yuan C, Wu S, Sun C, Huang Z, Xu H, Shen W. Constructing an oxygen vacancy- and hydroxyl-rich TiO2-supported Pd catalyst with improved Pd dispersion and catalytic stability. J Chem Phys 2023; 159:124701. [PMID: 38127376 DOI: 10.1063/5.0171023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/05/2023] [Indexed: 12/23/2023] Open
Abstract
Surface property modification of catalyst support is a straightforward approach to optimize the performance of supported noble metal catalysts. In particular, oxygen vacancies and hydroxyl groups play significant roles in promoting noble metal dispersion on catalysts as well as catalytic stability. In this study, we developed a nanoflower-like TiO2-supported Pd catalyst that has a higher concentration of oxygen vacancies and surface hydroxyl groups compared to that of commercial anatase and P25 support. Notably, due to the distinctive structure of the nanoflower-like TiO2, our catalyst exhibited improved dispersion and stabilization of Pd species and the formation of abundant reactive oxygen species, thereby facilitating the activation of CO and O2 molecules. As a result, the catalyst showed remarkable efficiency in catalyzing the low-temperature CO oxidation reaction with a complete CO conversion at 80 °C and stability for over 100 h.
Collapse
Affiliation(s)
- Huimin Liu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China
| | - Chenyi Yuan
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China
| | - Shipeng Wu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China
| | - Chao Sun
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China
| | - Zhen Huang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China
| | - Hualong Xu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China
| | - Wei Shen
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China
| |
Collapse
|
2
|
Wang Y, Du L, Guan H, Hao L, Hu Y, Du H. Changing the reaction pathway in TiO 2 photocatalytic dehalogenation of halogenated aromatic pollutants by surface hydroxyl regulation. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130088. [PMID: 36206712 DOI: 10.1016/j.jhazmat.2022.130088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/18/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Understanding the photocatalytic reductive dehalogenation mechanism of halogenated aromatic pollutants is of great research value. However, the proton source in the photocatalytic dehalogenation process of representative halogenated aromatic pollutants by TiO2 is not clear. In this study, the TiO2 surface was modified by hydrochloric acid, sodium hydroxide, and sodium fluoride to obtain TiO2 samples with different hydroxyl groups. It was found that the hydroxyl groups on the surface of TiO2 affects the sequence of proton and electron transfer in dehalogenation. The abundance of hydroxyl groups on the surface of TiO2 can accelerate the reductive dehalogenation process of representative halogenated aromatic pollutants. The kinetic solvent isotope effect was used to study the proton-coupled electron transfer process in the reaction. It shows that the enriching of protons on TiO2 bridging oxygen (bridging hydroxyl groups) is conducive to the rapid step of protonation of the reactant, and subsequent proton and electron transfer. On the contrary, the bridging hydroxyl groups can be removed by reacting with strongly basic sodium hydroxide and sodium ions can occupy the bridging oxygen. The substitution of bridging oxygen by fluorine ions can also lead to the destruction of bridge hydroxyl groups. Significantly, the absence of bridging hydroxyl groups on titanium dioxide will lead to the dehalogenation of representative halogenated aromatic pollutants initiated by electron transfer. This study is helpful to understand dehalogenation reaction paths catalyzed by TiO2.
Collapse
Affiliation(s)
- Yuanyuan Wang
- College of Materials Engineering, Jinling Institute of Technology, Nanjing 211169, PR China.
| | - Lang Du
- College of Materials Engineering, Jinling Institute of Technology, Nanjing 211169, PR China
| | - Hangmin Guan
- College of Materials Engineering, Jinling Institute of Technology, Nanjing 211169, PR China
| | - Lingyun Hao
- College of Materials Engineering, Jinling Institute of Technology, Nanjing 211169, PR China
| | - Yingfei Hu
- College of Materials Engineering, Jinling Institute of Technology, Nanjing 211169, PR China.
| | - Hongxiu Du
- College of Materials Engineering, Jinling Institute of Technology, Nanjing 211169, PR China
| |
Collapse
|
3
|
Yang H, Dai K, Zhang J, Dawson G. Inorganic-organic hybrid photocatalysts: Syntheses, mechanisms, and applications. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64096-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
4
|
Gao D, Xu J, Wang L, Zhu B, Yu H, Yu J. Optimizing Atomic Hydrogen Desorption of Sulfur-Rich NiS 1+ x Cocatalyst for Boosting Photocatalytic H 2 Evolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108475. [PMID: 34811811 DOI: 10.1002/adma.202108475] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Low-cost transition-metal chalcogenides (MSx ) are demonstrated to be potential candidate cocatalyst for photocatalytic H2 generation. However, their H2 -generation performance is limited by insufficient quantities of exposed sulfur (S) sites and their strong bonding with adsorbed hydrogen atoms (SHads ). To address these issues, an efficient coupling strategy of active-site-enriched regulation and electronic structure modification of active S sites is developed by rational design of core-shell Au@NiS1+ x nanostructured cocatalyst. In this case, the Au@NiS1+ x cocatalyst can be skillfully fabricated to synthesize the Au@NiS1+ x modified TiO2 (denoted as TiO2 /Au@NiS1+ x ) by a two-step route. Photocatalytic experiments exhibit that the resulting TiO2 /Au@NiS1+ x (1.7:1.3) displays a boosted H2 -generation rate of 9616 µmol h-1 g-1 with an apparent quantum efficiency of 46.0% at 365 nm, which is 2.9 and 1.7 times the rate over TiO2 /NiS1+ x and TiO2 /Au, respectively. In situ/ex situ XPS characterization and density functional theory calculations reveal that the free-electrons of Au can transfer to sulfur-enriched NiS1+ x to induce the generation of electron-enriched Sδ - active centers, which boosts the desorption of Hads for rapid hydrogen formation via weakening the strong SHads bonds. Hence, an electron-enriched Sδ - -mediated mechanism is proposed. This work delivers a universal strategy for simultaneously increasing the active site number and optimizing the binding strength between the active sites and hydrogen adsorbates.
Collapse
Affiliation(s)
- Duoduo Gao
- State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Jiachao Xu
- State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Linxi Wang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430070, P. R. China
| | - Bicheng Zhu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430070, P. R. China
| | - Huogen Yu
- State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430070, P. R. China
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430070, P. R. China
| |
Collapse
|
5
|
Ren X, Shi J, Duan R, Di J, Xue C, Luo X, Liu Q, Xia M, Lin B, Tang W. Construction of high-efficiency CoS@Nb2O5 heterojunctions accelerating charge transfer for boosting photocatalytic hydrogen evolution. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.12.076] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
6
|
Li Y, Chang H, Wang Z, Shen Q, Liu X, Xue J, Jia H. A 3D C@TiO 2 multishell nanoframe for simultaneous photothermal catalytic hydrogen generation and organic pollutant degradation. J Colloid Interface Sci 2021; 609:535-546. [PMID: 34802758 DOI: 10.1016/j.jcis.2021.11.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/01/2021] [Accepted: 11/10/2021] [Indexed: 01/25/2023]
Abstract
Rapid heat loss and fast charge carrier recombination constitute two crucial issues that hinder the development of efficient solar energy utilization and conversion over the semiconductor in a photothermal catalytic system. Inspired by energy production from waste water, we designed an advanced 3D C@TiO2 multishell nanoframe (MNF) photocatalyst. Its unique structural features of heat confinement and vibrant photocarrier kinetics lead to excellent photo-thermal conversion for synchronous superior photocatalytic H2 evolution (503 μmol g-1h-1) and 98.2% RhB removal without the use of any co-catalyst and sacrificial reagent under simulated sunlight irradiation (AM 1.5G). Mechanism exploration reveals that the difference between the inner and outer gas pressure formed inside C@TiO2 precursor facilitates the selective cleavage of outer TiO2 layers at selected temperatures during calcination. Synergistic effects between residual carbon core and multi-shelled TiO2 framework endow C@TiO2 MNF with excellent heat confinement and vibrant photocarrier kinetics. Such MNF photo-thermocatalyst concept provides a novel strategy for effective utilization of solar energy, and this work may open a novel avenue towards advanced nanostructures for efficient waste-to-energy conversion.
Collapse
Affiliation(s)
- Yong Li
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan 030024, PR China
| | - Huan Chang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan 030024, PR China
| | - Zhifei Wang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan 030024, PR China
| | - Qianqian Shen
- Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan 030024, PR China
| | - Xuguang Liu
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan 030024, PR China
| | - Jinbo Xue
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China.
| | - Husheng Jia
- Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan 030024, PR China; Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan 030024, PR China.
| |
Collapse
|
7
|
Wang J, Liu X, Li Z. Acceptorless Photocatalytic Dehydrogenation of Furfuryl Alcohol (FOL) to Furfural (FAL) and Furoic Acid (FA) over Ti 3 C 2 T x /CdS under Visible Light. Chem Asian J 2021; 16:2932-2938. [PMID: 34296809 DOI: 10.1002/asia.202100729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/22/2021] [Indexed: 11/05/2022]
Abstract
Acceptorless photocatalytic dehydrogenation is not only a promising alternative to photocatalytic water splitting for hydrogen generation but also provides a green and sustainable strategy for the synthesis of value-added organic compounds. In this work, Ti3 C2 Tx /CdS nanocomposites were obtained by self-assembly of hexagonal CdS in the presence of preformed Ti3 C2 Tx nanosheets, which serves as a photocatalyst for acceptorless dehydrogenation of biomass-derived furfuryl alcohol (FOL) to furfural (FAL) and furoic acid (FA) in neutral and alkaline medium respectively, with simultaneous generation of stoichiometric hydrogen under visible light. Ti3 C2 Tx MXene acts as an efficient cocatalyst for the photocatalytic dehydrogenation of FOL over CdS, with an optimum performance achieved over 0.50 wt%Ti3 C2 Tx /CdS nanocomposite. This study provides an economic and sustainable strategy for the simultaneous valorization of biomass-derived FOL to produce FAL and FA as well as the production of clean energy hydrogen under mild condition based on noble metal-free semiconductor-based photocatalysts.
Collapse
Affiliation(s)
- Jiaqi Wang
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xinyu Liu
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Zhaohui Li
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| |
Collapse
|