1
|
Liu S, Liu J, Guo H, Chen H, Sun L, Ma P, Wang J, Niu J. 2D Windmill-like Ln-Containing Organophosphonate-Based Polyoxomolybdates: Synthesis, Characterization, Fluorescence, and Magnetism. Inorg Chem 2022; 61:12678-12684. [PMID: 35926225 DOI: 10.1021/acs.inorgchem.2c01618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
By integration of {Ln(H2O)6}3+ into organophosphonate-based polyoxometalates, three Ln-containing organophosphonate-functionalized polyoxomolybdates Na1.5H1.5[{Ln(H2O)6}2{(Mo3O8)(O3PC(C3H6NH3)OPO3)}4]·(CH3CO2)·43H2O (Ln = Eu (1), Tb (2), and Dy (3)) are successfully prepared and systematically characterized. The X-ray crystallography analyses display complexes 1-3 crystallize in the C2/c space group of the monoclinic system and compose several distinctive tetramer windmill-like compounds that further assemble into two-dimensional (2D) frameworks associated with the {Ln(H2O)6}3+ core. The fluorescence spectra of 1-3 show red, green, and chartreuse emissions, respectively, originating in the typical f-f transitions of Ln3+ ions. More interestingly, complex 3 shows the field-induced single-molecule magnet (SMM) properties, resulting from the fact that [(Mo3O8)4{O3PC(C3H6NH3)OPO3}4]8- offers excellent magnetic isolation for Dy3+ ions by the nearest Dy1···Dy2 distance of 11.207 Å. The study demonstrates that the incorporation of {Ln(H2O)6}3+ into organophosphonate-based polyoxomolybdates is an effective synthetic strategy in implementing late-model opto-magnetic materials.
Collapse
Affiliation(s)
- Siyu Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Jiayu Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Haotian Guo
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Hanhan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Lin Sun
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| |
Collapse
|
2
|
Lu TQ, Xu H, Cheng LT, Wang XT, Chen C, Cao L, Zhuang GL, Zheng J, Zheng XY. Family of Nanoclusters, Ln 33 (Ln = Sm/Eu) and Gd 32, Exhibiting Magnetocaloric Effects and Fluorescence Sensing for MnO 4. Inorg Chem 2022; 61:8861-8869. [PMID: 35653200 DOI: 10.1021/acs.inorgchem.2c00898] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A family of nanoclusters, [Ln33(EDTA)12(OAc)2(CO3)4(μ3-OH)36(μ5-OH)4(H2O)38]·OAc·xH2O (x ≈ 50, Ln = Sm for 1; x ≈ 70, Ln = Eu for 2) and [Gd32(EDTA)12(OAc)2(C2O4)(CO3)2(μ3-OH)36(μ5-OH)4(H2O)36]·x(H2O) (x ≈ 70 for 3; H4EDTA = ethylene diamine tetraacetic acid), was prepared through the assembly of repeating subunits under the action of an anion template. The analysis of the structures showed that compounds 1 and 2 containing 33 Ln3+ ions were isostructural, which were constructed by three kinds of subunits in the presence of CO32- as an anion template, while compound 3 had a slightly different structure. Compound 3 containing 32 Gd3+ ions was formed by three types of subunits in the presence of CO32- and C2O42- as a mixed anion template. The CO32- anions came from the slow fixation of CO2 in the air. Meanwhile, one kind of high-nuclearity lanthanide clusters showed high chemical stability. The quantum Monte Carlo (QMC) calculation suggested that weak antiferromagnetic interactions were dominant between Gd3+ ions in 3. Magnetocaloric studies showed that compound 3 had a large entropy change of 43.0 J kg-1 K-1 at 2 K and 7 T. Surprisingly, compound 2 showed excellent recognition and detection effects for permanganate in aqueous solvents based on the fluorescence quenching phenomenon.
Collapse
Affiliation(s)
- Tian-Qi Lu
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, China
| | - Han Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Lan-Tao Cheng
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, China
| | - Xue-Tao Wang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, China
| | - Cheng Chen
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, China
| | - Lingyun Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Gui-Lin Zhuang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jun Zheng
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, China
| | - Xiu-Ying Zheng
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, China
| |
Collapse
|
3
|
Synthesis, Crystal Structures, Photoluminescence and Magnetic Properties of Lanthanide(III) Complexes Based on 2-(Thiophen-2-ylselanyl)acetic Acid Ligand. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02266-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Solvothermal synthesis and crystal structures of two Holmium(III)-5-Hydroxyisophthalate entangled coordination polymers and theoretical studies on the importance of π•••π stacking interactions. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Mono- and Mixed Metal Complexes of Eu 3+, Gd 3+, and Tb 3+ with a Diketone, Bearing Pyrazole Moiety and CHF 2-Group: Structure, Color Tuning, and Kinetics of Energy Transfer between Lanthanide Ions. Molecules 2021; 26:molecules26092655. [PMID: 34062750 PMCID: PMC8124961 DOI: 10.3390/molecules26092655] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/25/2021] [Accepted: 04/28/2021] [Indexed: 12/11/2022] Open
Abstract
Three novel lanthanide complexes with the ligand 4,4-difluoro-1-(1,5-dimethyl-1H-pyrazol-4-yl)butane-1,3-dione (HL), namely [LnL3(H2O)2], Ln = Eu, Gd and Tb, were synthesized, and, according to single-crystal X-ray diffraction, are isostructural. The photoluminescent properties of these compounds, as well as of three series of mixed metal complexes [EuxTb1-xL3(H2O)2] (EuxTb1-xL3), [EuxGd1-xL3(H2O)2] (EuxGd1-xL3), and [GdxTb1-xL3(H2O)2] (GdxTb1-xL3), were studied. The EuxTb1-xL3 complexes exhibit the simultaneous emission of both Eu3+ and Tb3+ ions, and the luminescence color rapidly changes from green to red upon introducing even a small fraction of Eu3+. A detailed analysis of the luminescence decay made it possible to determine the observed radiative lifetimes of Tb3+ and Eu3+ and estimate the rate of excitation energy transfer between these ions. For this task, a simple approximation function was proposed. The values of the energy transfer rates determined independently from the luminescence decays of terbium(III) and europium(III) ions show a good correlation.
Collapse
|
6
|
Topor A, Avram D, Dascalu R, Maxim C, Tiseanu C, Andruh M. Luminescence thermometry based on one-dimensional benzoato-bridged coordination polymers containing lanthanide ions. Dalton Trans 2021; 50:9881-9890. [PMID: 34195749 DOI: 10.1039/d1dt01550h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three 1D coordination polymers with benzoate bridges have been assembled in the presence of 18-crown-6-ether (18C6): 1∞[Tb(PhCOO)3(H2O)(EtOH)]·0.5(18C6) 1, 1∞[Eu(PhCOO)3(H2O)2]·0.5(18C6) 2, 1∞[Nd(PhCOO)3(H2O)2]·0.5(18C6) 3. Compounds 2 and 3 are isomorphous. The crown ether molecules co-crystallize with the resulting 1D coordination polymers and play an important role in the supramolecular architecture of the crystals. A molecular alloy was prepared in a similar way to compound 1 using TbCl3·6H2O and EuCl3·6H2O in a molar ratio of 95 : 5. The EuIII ions have statistically substituted the TbIII ions in the host lattice The luminescence thermometry performance of the Tb0.95Eu0.05 system was investigated using pulsed excitation into TbIII absorption at 352 nm. The maximum Sr value is 1.88% K-1 at 80 K which is slightly reduced at 1.60% K-1 at 313 K. Time-gated emission spectroscopy, employed here for the first time, allows us to reduce the spectral overlap of Tb and Eu emissions in the 610 to 625 nm range by 100% at 80 K, from 18 to 9%. Compound 1 as well as the molecular alloy, Tb0.95Eu0.05, show X-ray induced luminescence.
Collapse
Affiliation(s)
- Alexandru Topor
- University of Bucharest, Faculty of Chemistry, Inorganic Chemistry Laboratory, Str. Dumbrava Rosie nr. 23, 020464-Bucharest, Romania.
| | - Daniel Avram
- National Institute for Laser, Plasma and Radiation Physics, RO, 76900, Bucharest-Magurele, Romania.
| | - Radu Dascalu
- National Institute for Research and Development in Electrical Engineering ICPE-CA, Splaiul Unirii 313, 030138 Bucharest, Romania
| | - Catalin Maxim
- University of Bucharest, Faculty of Chemistry, Inorganic Chemistry Laboratory, Str. Dumbrava Rosie nr. 23, 020464-Bucharest, Romania.
| | - Carmen Tiseanu
- National Institute for Laser, Plasma and Radiation Physics, RO, 76900, Bucharest-Magurele, Romania.
| | - Marius Andruh
- University of Bucharest, Faculty of Chemistry, Inorganic Chemistry Laboratory, Str. Dumbrava Rosie nr. 23, 020464-Bucharest, Romania. and C. D. Nenitzescu Institute of Organic Chemistry of the Romanian Academy, Splaiul Independentei 202B, Bucharest, Romania
| |
Collapse
|
7
|
Qu YX, Ruan ZY, Huang GZ, Chen YC, Liu Y, Jia JH, Liu JL, Tong ML. Sensitive magnetic-field-response magnetization dynamics in a one-dimensional dysprosium coordination polymer. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00873k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Dy(iii) coordination polymer shows significant single-molecule magnet behavior with a sensitive low-field response.
Collapse
Affiliation(s)
- Yun-Xia Qu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, 510006 Guangzhou, Guangdong, P. R. China
| | - Ze-Yu Ruan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, 510006 Guangzhou, Guangdong, P. R. China
| | - Guo-Zhang Huang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, 510006 Guangzhou, Guangdong, P. R. China
| | - Yan-Cong Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, 510006 Guangzhou, Guangdong, P. R. China
| | - Yang Liu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, 510006 Guangzhou, Guangdong, P. R. China
| | - Jian-Hua Jia
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, 510006 Guangzhou, Guangdong, P. R. China
| | - Jun-Liang Liu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, 510006 Guangzhou, Guangdong, P. R. China
| | - Ming-Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, 510006 Guangzhou, Guangdong, P. R. China
| |
Collapse
|
8
|
Portolés-Gil N, Gómez-Coca S, Vallcorba O, Marbán G, Aliaga-Alcalde N, López-Periago A, Ayllón JA, Domingo C. Single molecule magnets of cobalt and zinc homo- and heterometallic coordination polymers prepared by a one-step synthetic procedure. RSC Adv 2020; 10:45090-45104. [PMID: 35516268 PMCID: PMC9058601 DOI: 10.1039/d0ra09132d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/07/2020] [Indexed: 11/28/2022] Open
Abstract
The synthesis of 1D cobalt and zinc monometallic and heterometallic coordination polymers (CPs) was carried out applying one-pot synthetic methods by using either supercritical carbon dioxide or ethanol as the solvent. A collection of four 1D CPs were thus obtained by the combination of a metal (or a mixture of metals) with the linker 1,4-bis(4-pyridylmethyl)benzene. The used metallic complexes were zinc and cobalt hexafluoroacetylacetonate, which can easily incorporate pyridine ligands in the coordination sphere of the metal centre. Independently of the used solvent, the precipitated phases involving Zn(ii), i.e., homometallic CP of Zn(ii) and bimetallic CP of Zn(ii)/Co(ii), were isostructural. Contrarily, homometallic CPs of Co(ii) were precipitated as an isostructural phase of Zn(ii) or with a different structure, depending on the used solvent. All the structures were resolved by XRD using synchrotron radiation. In addition, the magnetic properties of the new CPs involving Co(ii) were studied. Remarkably, at low temperatures with the application of an external field, they acted as field-induced single molecule magnets. One-pot synthesis of heterometallic (Zn(ii)/Co(ii)) nodes directing CP magnetic behaviour to single molecule magnets.![]()
Collapse
Affiliation(s)
- Núria Portolés-Gil
- Instituto de Ciencia de Materiales de Barcelona (CSIC) Campus UAB 08193 Bellaterra Spain
| | - Silvia Gómez-Coca
- Departament de Química Inorgànica i Orgànica, Institut de Recerca de Química Teòrica i Computacional, Universitat de Barcelona Diagonal 645 08028 Barcelona Spain
| | - Oriol Vallcorba
- ALBA Synchrotron Light Source 08290 Cerdanyola del Vallés Spain
| | - Gregorio Marbán
- Instituto de Ciencia y Tecnología del Carbono (INCAR-CSIC) 33011 Oviedo Spain
| | - Núria Aliaga-Alcalde
- Instituto de Ciencia de Materiales de Barcelona (CSIC) Campus UAB 08193 Bellaterra Spain .,ICREA, Institució Catalana de Recerca i Estudis Avançats Passeig Lluis Companys 23 08010 Barcelona Spain
| | - Ana López-Periago
- Instituto de Ciencia de Materiales de Barcelona (CSIC) Campus UAB 08193 Bellaterra Spain
| | - José A Ayllón
- Universidad Autónoma de Barcelona, Dept. Química Campus UAB 08193 Bellaterra Spain
| | - Concepción Domingo
- Instituto de Ciencia de Materiales de Barcelona (CSIC) Campus UAB 08193 Bellaterra Spain
| |
Collapse
|