1
|
Patel RS, Bhadoriya RJ, Modi KM, Vora MA, Patel MN, Parekh HM. Selective detection of Fe 3+ via fluorescent in real sample using aminoanthraquinone resorcin[4]arene-based receptors with logic gate application. Talanta 2024; 285:127322. [PMID: 39642608 DOI: 10.1016/j.talanta.2024.127322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/19/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Resorcin[4]arene based fluorescent sensors RES-AAQ containing eight anthraquinone groups as binding sites, were developed for very accurate and sensitive detection of Fe3+ metal ion. The motivation for this study lies in the need for advanced sensing techniques for precisely identifying Fe3+ ions. Due to its unique redox properties, Fe3+ plays a crucial role in biological processes, environmental remediation, medical diagnostics, and advanced detection methods. The sensors were extensively characterized using FT-IR, 1H NMR, 13C NMR, and ESI-MS techniques. The absorption spectra revealed significant interactions between RES-AAQ and Fe3+ ions. Fluorescence quenching was observed due to Photoinduced electron transfer (PET). The quenching process was systematically analyzed using Stern-Volmer analysis. Each sensor (L1, L2, L3, L4) demonstrated remarkable detection limits for Fe3+ ions (10.51 nM, 10.48 nM, 10.49 nM, 10.47 nM, respectively) along with substantial binding affinities (binding constants: 9.07x109 M-1, 1.19x109 M-1, 1.49x109 M-1 and 1.03x109 M-1 for L1, L2, L3, and L4, respectively). Traditional, Fe3+ detection methods often suffer from limitations such as complexity, lack of sensitivity, or interference from other metal ions. This research offers highly sensitive fluorescent sensors for Fe3+ detection with potential applications in human blood serum and tap water. Molecular docking, DFT studies, and ESI-MS investigation have been employed to gain insights into the binding interactions between the molecules. The low detection limits, high binding affinity, and real-world applicability highlight the significant advantages of developed sensors compared to existing methods. Additionally, a combinatorial logic gate was constructed to facilitate a proper understanding of the working principle of RES-AAQ.
Collapse
Affiliation(s)
- Ronak S Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388120, Gujarat. India
| | - Rubi J Bhadoriya
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388120, Gujarat. India
| | - Krunal M Modi
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China; Department of Humanity and Science, School of Engineering, Indrashil University, Mehsana, 382740, Gujarat, India
| | - Manoj A Vora
- Department of Chemical Engineering, Nirma Univesity, Gota, Ahmedabad, 382481, Gujarat, India; Department of Chemistry, Faculty of Science, Gokul Global University, Siddhpur, 384151, Gujarat. India
| | - Mohan N Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388120, Gujarat. India
| | - Hitesh M Parekh
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388120, Gujarat. India.
| |
Collapse
|
2
|
Song X, Hou X, Dang M, Zhao Q, Liu S, Ma Z, Ren Y. Design and preparation of a multi-responsive Cd-based fluorescent coordination polymer for smart sensing of nitrobenzene and ornidazole. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124656. [PMID: 38880074 DOI: 10.1016/j.saa.2024.124656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/27/2024] [Accepted: 06/11/2024] [Indexed: 06/18/2024]
Abstract
The improper utilization of nitrobenzene (NB) and ornidazole (ORN) has resulted in irreversible effects on the environment. By combining experimental investigation, density functional theory (DFT) calculations, and machine learning, an effective green strategy for detecting NB and ORN in aqueous solutions can be developed. In this study, a one-dimensional Cd-based coordination polymer (Cd-HCIA-3) was designed and synthesized using 5-((4-carboxybenzyl)oxy)isophthalic acid and rigid 2,2'-bipyridine under solvothermal reaction conditions. Cd-HCIA-3 exhibits excellent fluorescence properties and stability in aqueous solutions. DFT calculations were performed to predict the fluorescence sensing performance of Cd-HCIA-3, revealing that photoinduced electron transfer is the key mechanism for inducing fluorescence quenching in the presence of NB and ORN, with weak molecular interactions promoting electron transfer. Fluorescence sensing experiments were conducted to verify the DFT results, showing that Cd-HCIA-3 can selectively detect NB and ORN in aqueous solutions with limits of detection of 7.22 × 10-8 and 1.31 × 10-7 mol/L, respectively. This study's findings provide valuable insights into the design and synthesis of fluorescent coordination polymers for target analytes.
Collapse
Affiliation(s)
- Xiaoming Song
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Xiufang Hou
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China.
| | - Mingxuan Dang
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Qingxia Zhao
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Shuai Liu
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Zhihu Ma
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Yixia Ren
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China.
| |
Collapse
|
3
|
He J, Wen G, Peng Q, Hou X. The design, synthesis and application of metal-organic framework-based fluorescence sensors. Chem Commun (Camb) 2024; 60:11237-11252. [PMID: 39258376 DOI: 10.1039/d4cc03453h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Fluorescence-based chemical sensors have garnered significant attention due to their rapid response, high sensitivity, cost-effectiveness and ease of operation. Recently, metal-organic frameworks (MOFs) have been extensively utilized as platforms for constructing fluorescence sensors, owing to their ultra-high porosity, flexible tunability, and excellent luminescent properties. This feature article summarizes the progress made mainly by our research group in recent years in the construction strategies, principles, and types of MOF sensors, as well as their applications in quantitative sensing, qualitative identification analysis, and multimodal/multifunctional analysis. In addition, the challenges and an outlook on the future progression of MOF-based sensors are discussed, highlighting how these studies can contribute to addressing these issues. Hopefully, this feature article can provide some valuable guidance for the construction and application of MOFs in fluorescence sensing, thereby broadening their practical applications.
Collapse
Affiliation(s)
- Juan He
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Guijiao Wen
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Qianqian Peng
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Xiandeng Hou
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan 610064, China.
- Key Lab of Green Chem & Tech of MOE, and College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
4
|
Meng X, Cao L, Li B. Metal-Organic Framework Based on Pyrazinoquinoxaline Tetracarboxylic Acid for Fluorescence Sensing for Nitro Explosives. Inorg Chem 2024; 63:518-525. [PMID: 38109697 DOI: 10.1021/acs.inorgchem.3c03401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The rapid and selective detection of nitro explosives has become one of the current urgent environmental and safety issues. Fluorescent metal-organic frameworks (MOFs) provide strong support for the development of photoactive materials with excellent sensing performances. In this work, Zn2+ and pyrazinoquinoxaline tetracarboxylic acid with high nitrogen content were selected to construct a MOF structure termed Zn-MOF, which had excellent optical properties. The fluorescence sensing performance of Zn-MOF for nitro explosives was also investigated. The structural advantages of Zn-MOF, such as its porous structure, abundant host-guest interaction sites, and stable framework, ensure the prerequisites for various applications. Zn-MOF is not only capable of responding to a wide range of substrates, such as Fe3+, Cr2O72-, and MnO4-, to achieve fluorescence quenching detection but also able to achieve sensitive fluorescence sensing behavior for nitro explosives. In particular, for trinitrotoluene, the Ksv value can reach 8.72 × 103 M-1. The results show that the introduction of pyrazinoquinoxaline groups into MOFs can be an effective strategy for the preparation of highly efficient fluorescent sensing materials for nitro explosives.
Collapse
Affiliation(s)
- Xiaoyu Meng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Linghui Cao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Bao Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| |
Collapse
|
5
|
Yang S, Gong T, Dai Y, Xiao X, Liu J, Chen L, Zhao J. An Unusual Bismuth-Antimony-Europium Cluster-Imbedded Polyoxotungstate and Its Bidirectional Luminescence Detection. Inorg Chem 2023; 62:17861-17869. [PMID: 37844198 DOI: 10.1021/acs.inorgchem.3c02682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
An unprecedented aggregate formed by two bismuth-antimony-europium cluster-imbedded tungsten-oxo clusters and one Krebs-type polyoxotungstate linker [H2N(CH3)2]14Na30H6[W4O10][B-β-BiW9O33]2{[Bi5.35Sb0.65Eu3O9(H2O)9][B-α-SbW9O33]3}2·124H2O (1) was prepared. The polyoxoanion skeleton of 1 contains a Krebs-type polyoxotungstate [W4O10][B-β-BiW9O33]2}14- ({Bi2W22}) (1a) as a linker that offers six active coordinate O atoms (two μ3-O and four μ2-O atoms) to grasp two Bi-Sb-Eu cluster-imbedded tungsten-oxo clusters {[Bi5.35Sb0.65Eu3O9(H2O)9][B-α-SbW9O33]3}18- (1b) through Bi-O-W and Sb-O-W bonds. 1b comprises an unprecedented nona-nuclearity Bi-Sb-Eu [Bi5.35Sb0.65Eu3O9(H2O)9]9+ cluster encircled by three trivacant [B-α-SbW9O33]9-segments in a triangular motif through Eu-O-W, Sb-O-W, and Bi-O-W linkages into a trilobal trimer. Moreover, a bidirectional detection method by using 1 as an effective luminescence probe was proposed to recognize both Mn2+ and CO32- through an "on-off-on" mode. 1 can be used as an "on-off" luminescent sensor to detect Mn2+ ions in aqueous solution. The limit of detection was 0.05 μM (9 × 10-6 mg L-1), which is much lower than the World Health Organization (WHO) guideline for Mn2+ concentration in drinking water (0.05 mg L-1). Then the Mn2+-quenching system can be used as an "off-on" sensor to detect CO32- in water system. This work provides a new research idea for the application of rare-earth-imbedded polyoxotungstate-based materials in the field of optical smart detection.
Collapse
Affiliation(s)
- Sen Yang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Tiantian Gong
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yongchao Dai
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Xinxian Xiao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Jiancai Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
6
|
Kaur J, Kaur M, Kansal SK, Umar A, Algadi H. Highly fluorescent nickel based metal organic framework for enhanced sensing of Fe 3+ and Cr 2O 72- ions. CHEMOSPHERE 2023; 311:136832. [PMID: 36257400 DOI: 10.1016/j.chemosphere.2022.136832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/24/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Heavy metal contamination has sparked widespread concern among the populace. The significant issues necessitate the creation of high-performance fluorescent pigments that can identify harmful elements in water. The present study deals with metal organic framework [MOF] based on nickel [Ni-BDC MOF]. The Ni-BDC MOF was prepared by facile solvothermal method using nickel nitrate hexahydrate and terephthalic acid ligand as precursors. The MOF was characterized by various techniques in order to examine the crystal, morphological, structural, composition, thermal and optical properties. The detailed characterizations revealed that the synthesized Ni-BDC MOF are well-crystalline with high purity and possessing 3D rhombohedral microcrystals with rough surface. The MOF demonstrate good luminescence performance and excellent water stability. According to the Stern Volmer plot, the tests set up under optimized conditions demonstrate a linear correlation between the fluorescence intensity and concentration of both ions, i.e. Fe3+, and Cr2O72- ions. The linear range and detection limit for Fe3+ and Cr2O72- were found to be 0-1.4 nM and 0.159 nM, and 0-1 nM and 0.120 nM, respectively. The mechanisms for the selective detection of cations and anions were also explored. The recyclability for the prepared MOF was checked up to five cycles which showed excellent stability with just a slight reduction in efficiency. The constructed sensor was also used to assess the presence of Fe3+ and Cr2O72- ions in actual water samples. The results of the different experiments revealed that the prepared MOF is a good material for detecting Fe3+ and Cr2O72- ions.
Collapse
Affiliation(s)
- Jasjot Kaur
- Dr. S. S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh, 160014, India
| | - Manjot Kaur
- Dr. S. S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh, 160014, India
| | - Sushil Kumar Kansal
- Dr. S. S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh, 160014, India.
| | - Ahmad Umar
- Department of Chemistry, College of Science and Arts, Najran University, Najran, 11001, Saudi Arabia; Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Saudi Arabia; Department of Materials Science and Engineering, The Ohio State University, Columbus, 43210, OH, USA.
| | - Hassan Algadi
- Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Saudi Arabia; Department of Electrical Engineering, College of Engineering, Najran University, Najran, 11001, Saudi Arabia
| |
Collapse
|
7
|
Tajahmadi S, Molavi H, Ahmadijokani F, Shamloo A, Shojaei A, Sharifzadeh M, Rezakazemi M, Fatehizadeh A, Aminabhavi TM, Arjmand M. Metal-organic frameworks: A promising option for the diagnosis and treatment of Alzheimer's disease. J Control Release 2023; 353:1-29. [PMID: 36343762 DOI: 10.1016/j.jconrel.2022.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/22/2022]
Abstract
Beta-amyloid (Aβ) peptide is one of the main characteristic biomarkers of Alzheimer's disease (AD). Previous clinical investigations have proposed that unusual concentrations of this biomarker in cerebrospinal fluid, blood, and brain tissue are closely associated with the AD progression. Therefore, the critical point of early diagnosis, prevention, and treatment of AD is to monitor the levels of Aβ. In view of the potential of metal-organic frameworks (MOFs) for diagnosing and treating the AD, much attention has been focused in recent years. This review discusses the latest advances in the applications of MOFs for the early diagnosis of AD via fluorescence and electrochemiluminescence (ECL) detection of AD biomarkers, fluorescence detection of the main metal ions in the brain (Zn2+, Cu2+, Mn2+, Fe3+, and Al3+) in addition to magnetic resonance imaging (MRI) of the Aβ plaques. The current challenges and future strategies for translating the in vitro applications of MOFs into in vivo diagnosis of the AD are discussed.
Collapse
Affiliation(s)
- Shima Tajahmadi
- Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Tehran, Iran
| | - Hossein Molavi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran; Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan 45137-66731, Iran
| | - Farhad Ahmadijokani
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Amir Shamloo
- Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Tehran, Iran; Department of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran.
| | - Akbar Shojaei
- Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Tehran, Iran; Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran
| | - Ali Fatehizadeh
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka 580 031, India; School of Engineering, UPES, Bidholi, Dehradun, Uttarakhand 248 007, India.
| | - Mohammad Arjmand
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada.
| |
Collapse
|
8
|
Qi D, Si X, Guo L, Yan Z, Shao C, Yang L. Two novel and high-efficiency optical chemosensors of detecting Fe3+ and CrO42− based on Metal−organic frameworks of Cd(Ⅱ). J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
9
|
Cui B, Gao C, Fan J, Liu J, Feng B, Ruan X, Yang Y, Yuan Y, Chu K, Yan Z, Xia L. Integrating a Luminescent Porous Aromatic Framework into Indicator Papers for Facile, Rapid, and Selective Detection of Nitro Compounds. Molecules 2022; 27:molecules27196252. [PMID: 36234789 PMCID: PMC9572729 DOI: 10.3390/molecules27196252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Porous aromatic framework materials with high stability, sensitivity, and selectivity have great potential to provide new sensors for optoelectronic/fluorescent probe devices. In this work, a luminescent porous aromatic framework material (LNU-23) was synthesized via the palladium-catalyzed Suzuki cross-coupling reaction of tetrabromopyrene and 1,2-bisphenyldiborate pinacol ester. The resulting PAF solid exhibited strong fluorescence emission with a quantum yield of 18.31%, showing excellent light and heat stability. Because the lowest unoccupied molecular orbital (LUMO) of LNU-23 was higher than that of the nitro compounds, there was an energy transfer from the excited LNU-23 to the analyte, leading to the selective fluorescence quenching with a limit of detection (LOD) ≈ 1.47 × 10−5 M. After integrating the luminescent PAF powder on the paper by a simple dipping method, the indicator papers revealed a fast fluorescence response to gaseous nitrobenzene within 10 s, which shows great potential in outdoor fluorescence detection of nitro compounds.
Collapse
Affiliation(s)
- Bo Cui
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Changyuan Gao
- School of Environmental Science, Liaoning University, Shenyang 110036, China
| | - Jiating Fan
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Jinni Liu
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Bin Feng
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Xianghui Ruan
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yajie Yang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Ye Yuan
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Kuo Chu
- School of Environmental Science, Liaoning University, Shenyang 110036, China
- Correspondence: (K.C.); (Z.Y.); (L.X.)
| | - Zhuojun Yan
- College of Chemistry, Liaoning University, Shenyang 110036, China
- Correspondence: (K.C.); (Z.Y.); (L.X.)
| | - Lixin Xia
- College of Chemistry, Liaoning University, Shenyang 110036, China
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Yingkou Institute of Technology, Yingkou 115014, China
- Correspondence: (K.C.); (Z.Y.); (L.X.)
| |
Collapse
|
10
|
Shao J, Ni J, Chen W, Liu P, Liang Y, Li G, Wen L, Wang F. A Novel Co‐based MOF as an Efficient Multifunctional Fluorescent Chemosensor for the Determination of Fe
3+
and Cr
2
O
7
2−
in Aqueous Phase. ChemistrySelect 2022. [DOI: 10.1002/slct.202202094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Juanjuan Shao
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 China
| | - Jianling Ni
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 China
| | - Weimin Chen
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 China
| | - Penglai Liu
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 China
| | - Yu Liang
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 China
| | - Guangjun Li
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 China
| | - Lili Wen
- College of Chemistry Central China Normal University Wuhan Hubei 430079 China
| | - Fangming Wang
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 China
| |
Collapse
|
11
|
Geng J, Li Y, Lin H, Liu Q, Lu J, Wang X. A new three-dimensional zinc(II) metal-organic framework as a fluorescence sensor for sensing the biomarker 3-nitrotyrosine. Dalton Trans 2022; 51:11390-11396. [PMID: 35819031 DOI: 10.1039/d2dt01800d] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
3-Nitrotyrosine (3-NT), an oxidative stress biomarker, is closely associated with various diseases. Thus, rapid and sensitive detection of 3-NT is of great significance for preventing and treating diseases. Herein, we reported a new 3D zinc-based metal-organic framework (Zn-MOF) [Zn(L)(HBTC)] (L = (E)-4,4'-(ethene-1,2-diyl)bis[(N-pyridin-3-yl)benzamide], H3BTC = 1,3,5-benzenetricarboxylic acid), which was structurally characterized by single crystal X-ray diffraction, IR, PXRD and TG. The Zn-MOF can be used as a highly efficient fluorescence sensing material to provide a direct and low-cost method for the rapid detection of 3-NT and shows high sensitivity with a KSV value of 6.596 × 104 M-1, a rapid luminescence response within 24 s, excellent selectivity, high anti-interference ability and good recyclability. It is the first example of a MOF being used to directly detect 3-NT as a luminescence sensor to our knowledge. The sensing mechanism of the Zn-MOF towards 3-NT is discussed in detail, which provides a basis for the rational design of MOF sensing materials and their application in biomarker detection.
Collapse
Affiliation(s)
- Jun Geng
- College of Chemistry and Materials Engineering, Bohai University, Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Jinzhou 121013, P. R. China.
| | - Yuyao Li
- College of Chemistry and Materials Engineering, Bohai University, Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Jinzhou 121013, P. R. China.
| | - Hongyan Lin
- College of Chemistry and Materials Engineering, Bohai University, Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Jinzhou 121013, P. R. China.
| | - Qianqian Liu
- College of Chemistry and Materials Engineering, Bohai University, Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Jinzhou 121013, P. R. China.
| | - Junjun Lu
- College of Chemistry and Materials Engineering, Bohai University, Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Jinzhou 121013, P. R. China.
| | - Xiuli Wang
- College of Chemistry and Materials Engineering, Bohai University, Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Jinzhou 121013, P. R. China.
| |
Collapse
|
12
|
Two new Ag(I)-based compounds: luminescence and enhancing acupuncture treatment activity on ovarian cancer. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02251-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
13
|
A New Mn(II) Complex: Magnetic Property and Application Values in Foot and Ankle Arthritis. INT J POLYM SCI 2022. [DOI: 10.1155/2022/4609960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The solvothermal reactions of C3-symmerical 4,4
,4
-nitrilotribenzoic acid and MnCl2 afforded a novel Mn(II) compound, and its formula is [Mn3(TCA)2(e-urea)2(DMA)2]n·n(urea)·n(DMA) (1, H3TCA=4,4
,4
-nitrilotribenzoic acid, e-urea=2-imidazaolidone, DMA=N,N
-dimethylacetamide). Magnetic property investigation of 1 indicates weak antiferromagnetic mutual effects exist between neighboring Mn(II) ions. Serial biological tests were adopted to discover new compound activity. Firstly, the enzyme-linked immunosorbent assay (ELISA) was conducted to measure the content of inflammatory cytokines released into the synovial fluid. In addition, we also studied adenosine 5
-monophosphate- (AMP-) activated protein kinase (AMPK) inflammatory signaling pathway activation through real-time reverse transcription-polymerase chain reaction (RT-PCR).
Collapse
|
14
|
Four new cobalt(II)/zinc(II) complexes derived from the naphthalene-bridging bis(pyridyl)-bis(amide) ligand: Fluorescence sensing Fe3+ ions and CrO42− anions, photocatalytic degrading dyes. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Wang Q, Guo Z, Zhang Y, Ma L, Zhang P, Yang G, Wang Y. White light emission phosphor modulation, nitrobenzene sensing property and barcode anti-counterfeiting via lanthanides post-functionalized metal-organic frameworks. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Sun A, Wang C, Li M, Luo J, Liu Y, Yang W, Pan Q. Fluorescent zinc coordination polymer for highly selective and sensitive detection of 2,4,6-trinitrophenol in aqueous media. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.122987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Jing C, Yi YP, Tao L, Lu XL, Li LM. Construction of two new photoluminescent 3D heterometallic complexes and their nursing application values on ICU infection. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-04018-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Lin HY, Liu QQ, Tian Y, Zeng L. Two new bis(pyridine)-bis(amide)-based copper(II) coordination compounds for the electrochemical detection of trace Cr(VI) and efficient electrocatalytic oxygen evolution. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2022. [DOI: 10.1515/znb-2021-0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Two new metal-organic compounds (MOCs) [Cu(L)0.5(3-nba)2] (1) and [Cu(L)(2,5-tdc)] (2) have been hydrothermally synthesized by employing the ligand N,N′-di(3-pyridyl)adipoamide (L) and two carboxylic acids (3-Hnba = 3-nitrobenzoic acid, 2,5-H2tdc = 2,5-thiophenedicarboxylic acid) as ligands. Compound 1 displays a metal-organic chain-like structure formed by the {Cu2(3-nba)4} double-paddle wheel units and the µ
2-bridging L ligands. The adjacent polymeric chains form a supramolecular layered structure through hydrogen bonding. Compound 2 shows a 3D metal-organic polymeric framework derived from Cu-L layers and µ
2-bridging 2,5-tdc ligands, which presents a 3,5-connected {4.62}{4.66.83} topology. The electrochemical and electrocatalytic behavior of the two compounds has been studied in detail. Carbon paste working electrodes modified with compounds 1 and 2 can be used as highly selective sensors for detecting traces Cr(VI). Both electrodes show also electrocatalytic performance in oxygen evolution reactions (OERs).
Collapse
Affiliation(s)
- Hong-Yan Lin
- College of Chemistry and Materials Engineering , Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University , Jinzhou 121013 , P. R. China
| | - Qian-Qian Liu
- College of Chemistry and Materials Engineering , Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University , Jinzhou 121013 , P. R. China
| | - Yuan Tian
- College of Chemistry and Materials Engineering , Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University , Jinzhou 121013 , P. R. China
| | - Ling Zeng
- College of Chemistry and Materials Engineering , Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University , Jinzhou 121013 , P. R. China
| |
Collapse
|
19
|
Cadmium(II) coordination polymer based on flexible dithiolate-polyamine binary ligands system: Crystal structure, Hirshfeld surface analysis, antimicrobial, and DNA cleavage potential. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Zhang YN, Chen JL, Su CY, Huang WH. A multifunctional cadmium-based metal-organic framework from a tricarboxylate ligand showing sensing and sensitization. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
21
|
Li B, Chang H, Wang C, Wang S. Study on Polyoxomolybdate [Mo8O26]4− Based Crystalline Compound and Its Polypyrrole Nanocomposite as l-Cysteine Colorimetric Biosensor. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02162-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Buasakun J, Srilaoong P, Chainok K, Raksakoon C, Rattanakram R, Duangthongyou T. Dual luminescent coordination polymers based on flexible aliphatic carboxylate ligands supplemented by rigid bipyridyl ligands for 2,4-dinitrophenol (DNP) and iron(III) ion detection. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Sun QZ, Zhao B, Chai LY, Liu H, Jin HZ, Liu H. A 3D nickel(II) coordination polymer constructed by mixed- ligand strategy: synthesis, crystal structure and sensing of Hg(II) ion. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1952239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Qiao-Zhen Sun
- School of Materials Science and Engineering, Central South University, Changsha, China
| | - Bo Zhao
- School of Materials Science and Engineering, Central South University, Changsha, China
| | - Li-Yuan Chai
- Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution (CNERC-CTHMP), School of Metallurgy and Environment, Central South University, Changsha, China
| | - Hao Liu
- School of Materials Science and Engineering, Central South University, Changsha, China
| | - Hao-Zhe Jin
- School of Materials Science and Engineering, Central South University, Changsha, China
| | - Hui Liu
- Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution (CNERC-CTHMP), School of Metallurgy and Environment, Central South University, Changsha, China
| |
Collapse
|
24
|
Liu XT, Wang BC, Hao BB, Zhang CX, Wang QL. Dual-functional coordination polymers with high proton conduction behaviour and good luminescence properties. Dalton Trans 2021; 50:8718-8726. [PMID: 34075984 DOI: 10.1039/d1dt00932j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two coordination polymers, [M(5-hip)(H2O)3]n (M = Cd2+ (1), Zn2+ (2), 5-hip = 5-hydroxyisophthalic acid), have been synthesized under hydrothermal conditions. The crystal structure reveals that complexes 1 and 2 have 1D chain structures by the coordination of metal ions and 5-hip. 1D chains are connected by hydrogen bonds to form a 3D structure. AC impedance analysis shows that the proton conductivity of complexes 1 and 2 comes up to 1.58 × 10-3 S cm-1 (98%RH, 343 K) and 5.27 × 10-4 S cm-1 (98%RH, 353 K), respectively. To further improve the proton conductivity, a hybrid membrane was prepared by the solution casting method with complexes as fillers and sulfonated polyether ether ketone (SPEEK) as the organic matrix. The proton conductivity of hybrid membranes 1@SPEEK-5 and 2@SPEEK-5 is 1.97 and 1.58 times higher than that of pure SPEEK membranes, respectively. Furthermore, the two complexes are excellent fluorescent sensors, which could detect Cr2O72- in aqueous solution with high sensitivity and selectivity. Both of them have low detection limits for Cr2O72- in aqueous solution, where the detection limit of complex 1 is 0.8 μM and that of complex 2 is 1 μM. The above work demonstrates that the two complexes are dual-functional materials with high proton conduction and good fluorescence properties.
Collapse
Affiliation(s)
- Xue-Ting Liu
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.
| | - Bin-Cheng Wang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.
| | - Biao-Biao Hao
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.
| | - Chen-Xi Zhang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, P. R. China. and Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Qing-Lun Wang
- College of Chemistry, Nankai University, Tianjin 300071, P. R. China. and Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
25
|
Zhou RS, Zhang XY, Fu J, Xin LD, Jiao WZ, Song JF. Four new Cu 6S 6 cluster-based coordination compounds: synthesis, crystal structures and fluorescence properties. Dalton Trans 2021; 50:4567-4576. [PMID: 33729233 DOI: 10.1039/d1dt00322d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A hexagonal prismatic Cu6S6 cluster exhibits excellent near-infrared fluorescence properties due to its short Cu-Cu bonds, however, the construction of Cu6S6 cluster-based compounds with extended structures is still a challenge. Here, four new Cu6S6 cluster-based coordination compounds, formulated as Cu3(pymt)3 (1), {(CuCN)2[Cu3(mpymt)3]}n (2), {(CuSCN)[Cu3(mpymt)3]}n (3) and {(CuCN)2[Cu3(dmpymt)3]·CH3CN}n (4) (Hpymt = pyrimidine-2-thiolate, Hmpymt = 4-methyl-pyrimidine-2-thione and Hdmpymt = 4,6-dimethylpyrimidine-2-thione), have been synthesized through the reactions of mercaptopyrimidine derivatives and CuCN or CuSCN under solvo-thermal conditions and characterized by single-crystal X-ray diffraction, powder X-ray diffraction, IR spectroscopy, elemental analysis, and thermal gravimetric analysis. Single-crystal X-ray diffraction analysis reveals that compound 1 is a zero-dimensional Cu6(pymt)6 molecule containing a distorted pseudo-hexagonal prismatic Cu6S6 core. Compounds 2 and 4 with isomorphic frameworks but different organic linkers show a rare three-dimensional framework with nor topology constructed from Cu6(mpymt)6 units and one-dimensional chiral [Cu(CN)]n chains; compared with compound 2, a more hydrophobic one-dimensional channel in compound 4 is observed due to the increase of the methyl groups on the pyrimidine ligand, in which acetonitrile molecules are filled in the channels of compound 4. Compound 3 shows a rare two-dimensional layer constructed from Cu6(mpymt)6 units and one-dimensional puckered (CuSCN)n chains. For the first time, Cu6S6 clusters are connected to one-dimensional inorganic CuCN (or CuSCN) chains through mercaptopyrimidine derivatives to obtain extended arrays in compounds 2-4. The crystals of compounds 1-4 in the solid state all show apparent red light emission. Compound 4 shows sensitive luminescence quenching response to nitrobenzene (NB), and the corresponding quenching constant (Ksv) and detection limit are 2.06 × 103 M-1 and 9.27 ppm, respectively. This study provides a new strategy to construct Cu6S6 cluster-based coordination polymers that have great potential in various applications such as luminescence sensing.
Collapse
Affiliation(s)
- Rui-Sha Zhou
- Department of Chemistry, North University of China, Taiyuan, Shanxi 030051, P. R. China.
| | | | | | | | | | | |
Collapse
|
26
|
Jiang Y, Sun J, Yang X, Shen J, Fu Y, Fan Y, Xu J, Wang L. Cd-MOF@PVDF Mixed-Matrix Membrane with Good Catalytic Activity and Recyclability for the Production of Benzimidazole and Amino Acid Derivatives. Inorg Chem 2021; 60:2087-2096. [DOI: 10.1021/acs.inorgchem.1c00084] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Yansong Jiang
- College of Chemistry, Jilin University, Changchun, 130012 Jilin, People’s Republic of China
| | - Jing Sun
- College of Chemistry, Jilin University, Changchun, 130012 Jilin, People’s Republic of China
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai’an, 223003 Jiangsu, People’s Republic of China
| | - Xiaona Yang
- College of Chemistry, Jilin University, Changchun, 130012 Jilin, People’s Republic of China
| | - Jieyu Shen
- College of Chemistry, Jilin University, Changchun, 130012 Jilin, People’s Republic of China
| | - Yu Fu
- College of Chemistry, Jilin University, Changchun, 130012 Jilin, People’s Republic of China
| | - Yong Fan
- College of Chemistry, Jilin University, Changchun, 130012 Jilin, People’s Republic of China
| | - Jianing Xu
- College of Chemistry, Jilin University, Changchun, 130012 Jilin, People’s Republic of China
| | - Li Wang
- College of Chemistry, Jilin University, Changchun, 130012 Jilin, People’s Republic of China
| |
Collapse
|
27
|
Solid-State Structural Transformation and Photoluminescence Properties of Supramolecular Coordination Compounds. Symmetry (Basel) 2021. [DOI: 10.3390/sym13010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The combination of strong coordination bonds and hydrogen bonding interactions were used to generate a series of supramolecular coordination materials (SCMs), which was achieved by reacting a bis-pyridyl amide ligand, namely N-(4-pyridyl)nicotinamide (4PNA) with copper(II), zinc(II), and cadmium(II) benzoates. The SCMs were structurally characterized using X-ray diffraction and the key intermolecular interactions were identified via Hirshfeld surface analysis. The role of solvent molecules on the supramolecular architecture was analyzed by synthesizing the SCMs in different solvents/solvent mixtures. A solvent-mediated solid-state structural transformation was observed in copper(II) SCMs and we were able to isolate the intermediate form of the crystal-to-crystal transformation process. The luminescence experiments revealed that complexation enhanced the fluorescence properties of 4PNA in the zinc(II) and cadmium(II) SCMs, but a reverse phenomenon was observed in the copper(II) SCMs. This work demonstrated the tuning of supramolecular assembly in coordination compounds as a function of solvents for generating SCMs with diverse properties.
Collapse
|
28
|
A Mixed Ligands Strategy Based Luminescent Binuclear Cadmium(II) Coordination Polymer as Chemo-sensor in the Detection of Nitrofurantoin Antibiotic in Water. J CLUST SCI 2021. [DOI: 10.1007/s10876-020-01975-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
29
|
Fan L, Zhao D, Li B, Chen X, Wang F, Deng Y, Niu Y, Zhang X. An exceptionally stable luminescent cadmium(ii) metal–organic framework as a dual-functional chemosensor for detecting Cr(vi) anions and nitro-containing antibiotics in aqueous media. CrystEngComm 2021. [DOI: 10.1039/d0ce01721c] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Based on four kinds of SBUs, a robust Cd(ii) LMOF was fabricated that possessed highly sensitive detectability as a dual-response chemosensor for Cr(vi) anions and broad-spectrum nitro-containing antibiotics in aqueous media.
Collapse
Affiliation(s)
- Liming Fan
- Department of Chemistry
- College of Science
- North University of China
- Taiyuan 030051
- China
| | - Dongsheng Zhao
- Department of Chemistry
- College of Science
- North University of China
- Taiyuan 030051
- China
| | - Bei Li
- Department of Chemistry
- College of Science
- North University of China
- Taiyuan 030051
- China
| | - Xi Chen
- Institute of Interface Chemistry and Engineering
- Taiyuan Institute of Technology
- Taiyuan 030008
- P. R. China
- School of Chemical Engineering and Technology
| | - Feng Wang
- Department of Chemistry
- College of Science
- North University of China
- Taiyuan 030051
- China
| | - Yuxin Deng
- Department of Chemistry
- College of Science
- North University of China
- Taiyuan 030051
- China
| | - Yulan Niu
- Institute of Interface Chemistry and Engineering
- Taiyuan Institute of Technology
- Taiyuan 030008
- P. R. China
- School of Chemical Engineering and Technology
| | - Xiutang Zhang
- Department of Chemistry
- College of Science
- North University of China
- Taiyuan 030051
- China
| |
Collapse
|
30
|
Zhao D, Song J, Zhang X, Wang F, Li B, Yang L, Deng Y, Li Q, Fan L. A pillar-layered binuclear 3D cobalt(ii) coordination polymer as an electrocatalyst for overall water splitting and as a chemosensor for Cr(vi) anion detection. CrystEngComm 2021. [DOI: 10.1039/d1ce00685a] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A 3D pillar-layered cobalt(ii) CP with a 3D (4,6)-connected {44·610·8}{44·62} fsc net was designed and it showed great potential as an electrocatalyst in the overall water splitting and as a chemosensor for Cr(vi) anion detection.
Collapse
Affiliation(s)
- Dongsheng Zhao
- Department of Chemistry, College of Science, North University of China, Taiyuan, P. R. China
| | - Junqi Song
- Department of Chemistry, College of Science, North University of China, Taiyuan, P. R. China
| | - Xiutang Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan, P. R. China
| | - Feng Wang
- Department of Chemistry, College of Science, North University of China, Taiyuan, P. R. China
| | - Bei Li
- Department of Chemistry, College of Science, North University of China, Taiyuan, P. R. China
| | - Lulu Yang
- Department of Chemistry, College of Science, North University of China, Taiyuan, P. R. China
| | - Yuxin Deng
- Department of Chemistry, College of Science, North University of China, Taiyuan, P. R. China
| | - Qingbo Li
- Center for Optics Research and Engineering, Shandong University, Qingdao, Shandong, P. R. China
| | - Liming Fan
- Department of Chemistry, College of Science, North University of China, Taiyuan, P. R. China
| |
Collapse
|
31
|
Wu Y, Zhong Y, Kang W, Liu Y, Yang T, Zhou M, Zhou L. Two new luminescent Cd( ii)-based coordination polymers by regulating the asymmetrical tetracarboxylate and auxiliary ligands displaying high sensitivity for Fe 3+ and CrO 42−. CrystEngComm 2021. [DOI: 10.1039/d1ce00310k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The results showed luminescence spectra with emission intensities significantly quenched towards Fe3+ and CrO42−. The low concentrations of the two ions indicate high sensitivities of the synthesized compounds towards analytes.
Collapse
Affiliation(s)
- Yu Wu
- School of Chemistry and Environmental Engineering
- Institute of Functional Materials
- Sichuan University of Science & Engineering
- Zigong
- P. R. China
| | - Yuyu Zhong
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University
- School of Pharmacy
- Guangdong Medical University
- Dongguan
- China
| | - Weiyi Kang
- School of Chemistry and Environmental Engineering
- Institute of Functional Materials
- Sichuan University of Science & Engineering
- Zigong
- P. R. China
| | - Yiwei Liu
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University
- School of Pharmacy
- Guangdong Medical University
- Dongguan
- China
| | - Tingting Yang
- School of Chemistry and Environmental Engineering
- Institute of Functional Materials
- Sichuan University of Science & Engineering
- Zigong
- P. R. China
| | - Mi Zhou
- School of Chemistry and Chemical Engineering
- Chongqing University of Science and Technology
- Chongqing
- China
| | - Luyi Zhou
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University
- School of Pharmacy
- Guangdong Medical University
- Dongguan
- China
| |
Collapse
|