1
|
Cortez N, Villegas C, Burgos V, Cabrera-Pardo JR, Ortiz L, González-Chavarría I, Nchiozem-Ngnitedem VA, Paz C. Adjuvant Properties of Caffeic Acid in Cancer Treatment. Int J Mol Sci 2024; 25:7631. [PMID: 39062873 PMCID: PMC11276737 DOI: 10.3390/ijms25147631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Caffeic acid (CA) is a polyphenol belonging to the phenylpropanoid family, commonly found in plants and vegetables. It was first identified by Hlasiwetz in 1867 as a breakdown product of caffetannic acid. CA is biosynthesized from the amino acids tyrosine or phenylalanine through specific enzyme-catalyzed reactions. Extensive research since its discovery has revealed various health benefits associated with CA, including its antioxidant, anti-inflammatory, and anticancer properties. These effects are attributed to its ability to modulate several pathways, such as inhibiting NFkB, STAT3, and ERK1/2, thereby reducing inflammatory responses, and activating the Nrf2/ARE pathway to enhance antioxidant cell defenses. The consumption of CA has been linked to a reduced risk of certain cancers, mitigation of chemotherapy and radiotherapy-induced toxicity, and reversal of resistance to first-line chemotherapeutic agents. This suggests that CA could serve as a useful adjunct in cancer treatment. Studies have shown CA to be generally safe, with few adverse effects (such as back pain and headaches) reported. This review collates the latest information from Google Scholar, PubMed, the Phenol-Explorer database, and ClinicalTrials.gov, incorporating a total of 154 articles, to underscore the potential of CA in cancer prevention and overcoming chemoresistance.
Collapse
Affiliation(s)
- Nicole Cortez
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (N.C.); (C.V.)
| | - Cecilia Villegas
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (N.C.); (C.V.)
| | - Viviana Burgos
- Departamento de Ciencias Biológicas y Químicas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Rudecindo Ortega, Temuco 4780000, Chile;
| | - Jaime R. Cabrera-Pardo
- Laboratorio de Química Aplicada y Sustentable (LabQAS), Departamento de Química, Facultad de Ciencias, Universidad del Bío-Bío, Concepción 4081112, Chile;
| | - Leandro Ortiz
- Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5110566, Chile;
| | - Iván González-Chavarría
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas Universidad de Concepción, Concepción 4030000, Chile;
| | | | - Cristian Paz
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (N.C.); (C.V.)
| |
Collapse
|
2
|
Bieler I, Wagner C, Merzweiler K. Lithium and sodium 3-(3,4-di-hydroxy-phen-yl)propenoate hydrate. Acta Crystallogr E Crystallogr Commun 2024; 80:401-407. [PMID: 38584729 PMCID: PMC10993602 DOI: 10.1107/s2056989024002494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/15/2024] [Indexed: 04/09/2024]
Abstract
Treatment of 3-(3,4-di-hydroxy-phen-yl)propenoic acid (caffeic acid or 3,4-di-hydroxy-cinnamic acid) with the alkali hydroxides MOH (M = Li, Na) in aqueous solution led to the formation of poly[aqua-[μ-3-(3,4-di-hydroxy-phen-yl)propenoato]lithium], [Li(C9H7O4)(H2O)]n, 1, and poly[aqua-[μ-3-(3,4-di-hydroxy-phen-yl)propenoato]sodium], [Na(C9H7O4)(H2O)]n, 2. The crystal structure of 1 consists of a lithium cation that is coordinated nearly tetra-hedrally by three carboxyl-ate oxygen atoms and a water mol-ecule. The carboxyl-ate groups adopt a μ3-κ3 O:O':O' coordination mode that leads to a chain-like catenation of Li cations and carboxyl-ate units parallel to the b axis. Moreover, the lithium carboxyl-ate chains are connected by hydrogen bonds between water mol-ecules attached to lithium and catechol OH groups. The crystal structure of 2 shows a sevenfold coordination of the sodium cation by one water mol-ecule, two monodentately binding carboxyl-ate groups and four oxygen atoms from two catechol groups. The coordination polyhedra are linked by face- and edge-sharing into chains extending parallel to the b axis. The chains are inter-linked by the bridging 3-(3,4-di-hydroxy-phen-yl)propenoate units and by inter-molecular hydrogen bonds to form the tri-periodic network.
Collapse
Affiliation(s)
- Irén Bieler
- Martin-Luther-Universität Halle Wittenberg, Naturwissenschaftliche Fakultät II, Institut für Chemie, Germany
| | - Christoph Wagner
- Martin-Luther-Universität Halle Wittenberg, Naturwissenschaftliche Fakultät II, Institut für Chemie, Germany
| | - Kurt Merzweiler
- Martin-Luther-Universität Halle Wittenberg, Naturwissenschaftliche Fakultät II, Institut für Chemie, Germany
| |
Collapse
|
3
|
Yu H, Zhang L, Liu M, Yang D, He G, Zhang B, Gong N, Lu Y, Du G. Enhancing Solubility and Dissolution Rate of Antifungal Drug Ketoconazole through Crystal Engineering. Pharmaceuticals (Basel) 2023; 16:1349. [PMID: 37895820 PMCID: PMC10610424 DOI: 10.3390/ph16101349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
To improve the solubility and dissolution rate of the BCS class II drug ketoconazole, five novel solid forms in 1:1 stoichiometry were obtained upon liquid-assisted grinding, slurry, and slow evaporation methods in the presence of coformers, namely, glutaric, vanillic, 2,6-dihydroxybenzoic, protocatechuic, and 3,5-dinitrobenzoic acids. Single-crystal X-ray diffraction analysis revealed that the hydroxyl/carboxylic acid. . .N-imidazole motif acts as the dominant supramolecular interaction in the obtained solid forms. The solubility of ketoconazole in distilled water significantly increased from 1.2 to 2165.6, 321.6, 139.1, 386.3, and 191.7 μg mL-1 in the synthesized multi-component forms with glutaric, vanillic, 2,6-dihydroxybenzoic, protocatechuic, and 3,5-dinitrobenzoic acid, respectively. In particular, the cocrystal form with glutaric acid showed an 1800-fold solubility increase in water concerning ketoconazole. Our study provides an alternative approach to improve the solubility and modify the release profile of poorly water-soluble drugs such as ketoconazole.
Collapse
Affiliation(s)
- Hongmei Yu
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China; (H.Y.); (L.Z.); (M.L.); (D.Y.); (B.Z.)
| | - Li Zhang
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China; (H.Y.); (L.Z.); (M.L.); (D.Y.); (B.Z.)
| | - Meiju Liu
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China; (H.Y.); (L.Z.); (M.L.); (D.Y.); (B.Z.)
| | - Dezhi Yang
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China; (H.Y.); (L.Z.); (M.L.); (D.Y.); (B.Z.)
| | - Guorong He
- Beijing City Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China; (G.H.); (G.D.)
| | - Baoxi Zhang
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China; (H.Y.); (L.Z.); (M.L.); (D.Y.); (B.Z.)
| | - Ningbo Gong
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China; (H.Y.); (L.Z.); (M.L.); (D.Y.); (B.Z.)
| | - Yang Lu
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China; (H.Y.); (L.Z.); (M.L.); (D.Y.); (B.Z.)
| | - Guanhua Du
- Beijing City Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China; (G.H.); (G.D.)
| |
Collapse
|
4
|
Hao H, Zhang Y, Hu X, Guo W, Yang C, Wang J. Cocrystallization of 5-fluorouracil with gallic acid: A novel 5-fluorouracil cocrystal displaying synergistic anti-tumor activity both in oral and intraperitoneal injection administration. Eur J Pharm Biopharm 2023; 187:12-23. [PMID: 37031731 DOI: 10.1016/j.ejpb.2023.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/21/2023] [Accepted: 04/03/2023] [Indexed: 04/11/2023]
Abstract
Gallic acid (GA) is a naturally occurring polyphenolic compound exhibiting anti-tumor activity. To clarify the capability of GA in optimizing the in vitro/in vivo properties of the first line anti-tumor drug 5-fluorouracil (5-FU) and achieve synergistically enhanced anti-tumor activity, a novel cocrystal hydrate of 5-FU-GA-H2O was successfully screened and characterized based on various spectroscopic and experimental analysis including Fourier transform infrared spectroscopy (FT-IR), Raman spectra (Raman), powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), thermogravimetric (TG) and scanning electric microscope (SEM) techniques. The results suggested the existence of hydrogen bonding interactions between C=O group of 5-FU and O-H group of GA. Although the dissolution rate and solubility of 5-FU-GA-H2O cocrystal were slowed and lowered compared with that of 5-FU, respectively, the membrane permeability was enhanced for cocrystal compared with that of intact 5-FU and physical mixture (PM) of 5-FU and GA. For the cocrystal, the cumulative amount per unit area of permeated 5-FU in the first 10 h was 2.56 and 9.97 times of that of pure 5-FU and PM, respectively, in the case that transmembrane behavior of 5-FU depended on the type of solution from which the powder was dissolved. Meanwhile, improvement on oral bioavailability by co-crystallization was observed; AUC0-t of cocrystal was 2.78-fold higher than that of 5-FU. Furthermore, the cocrystal displayed a superior cytotoxic activity on 4T1 mouse breast cancer cells compared with pure 5-FU and even the PM. It was confirmed that the cocrystal solution induced higher autophagic flux than those of 5-FU and PM in 4T1 cell, suggesting that autophagy rather than apoptosis mainly mediated cell death. The obvious difference of tumor inhibition activity between PM and cocrystal in intraperitoneal injection administration indicated that some of the interactions formed in the solid cocrystal could retain in solution in some way. Benefiting from synergistic cytotoxicity, drug efficacy in vivo was enhanced through injection administration of solution from which cocrystal was dissolved.
Collapse
Affiliation(s)
- Han Hao
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Yao Zhang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Xiaoxiao Hu
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Wei Guo
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Caiqin Yang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Jing Wang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, People's Republic of China.
| |
Collapse
|
5
|
Yu YM, Bu FZ, Yu Y, Yan CW, Wu ZY, Li YT. 5-fluorouracil-caffeic acid cocrystal delivery agent with long-term and synergistic high-performance antitumor effects. Nanomedicine (Lond) 2023; 17:2215-2229. [PMID: 36927097 DOI: 10.2217/nnm-2022-0208] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Aim: To explore how to transform cocrystals of the anticancer drug 5-fluorouracil (FL) with caffeic acid (CF; FL-CF-2H2O) into a nanoformulation, a self-assembly strategy of cocrystal-loaded micelles is proposed. Methods: Nanomicelles were assembled to deliver cocrystal FL-CF-2H2O with synergistic activity, and their in vitro/vivo properties were evaluated by combining theoretical and experimental methods. Result: More cocrystal was packed into the polymers due to the stronger interaction energy during micellar assembly, producing excellent cytotoxicity and pharmacokinetic behavior, especially synergistic abilities and long-term therapy. Conclusion: This case exemplifies the particular benefits of the self-assembly strategy of cocrystal-loaded micelles in keeping a delicate balance between long-term effects and high efficiency for FL, and offers a feasible technical scheme for cocrystal delivery agents for antitumor drugs.
Collapse
Affiliation(s)
- Yue-Ming Yu
- School of Medicine & Pharmacy & College of Marine Life Science, Ocean University of China, Qingdao, Shandong, 266003, China.,Laboratory for Marine Drugs & Bioproducts, Qingdao National Laboratory for Marine Science & Technology, Shandong, 266003, China
| | - Fan-Zhi Bu
- School of Medicine & Pharmacy & College of Marine Life Science, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Yu Yu
- Qingdao Institute for Food & Drug Control, Qingdao, Shandong, 266071, China
| | - Cui-Wei Yan
- School of Medicine & Pharmacy & College of Marine Life Science, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Zhi-Yong Wu
- School of Medicine & Pharmacy & College of Marine Life Science, Ocean University of China, Qingdao, Shandong, 266003, China.,Laboratory for Marine Drugs & Bioproducts, Qingdao National Laboratory for Marine Science & Technology, Shandong, 266003, China
| | - Yan-Tuan Li
- School of Medicine & Pharmacy & College of Marine Life Science, Ocean University of China, Qingdao, Shandong, 266003, China.,Laboratory for Marine Drugs & Bioproducts, Qingdao National Laboratory for Marine Science & Technology, Shandong, 266003, China
| |
Collapse
|
6
|
Yadav D, Savjani J, Savjani K, Shah H. Exploring Potential Coformer Screening Techniques Based on Experimental and Virtual Strategies in the Manufacturing of Pharmaceutical Cocrystal of Efavirenz. J Pharm Innov 2023. [DOI: 10.1007/s12247-022-09704-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
7
|
Zhang Y, Li Y, Zhang Y, Liu L, Zou D, Sun W, Li J, Feng Y, Geng Y, Cheng G. Improved solubility and hygroscopicity of enoxacin by pharmaceutical salts formation with hydroxybenzonic acids via charge assisted hydrogen bond. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Kumbhar P, Kolekar K, Khot C, Dabhole S, Salawi A, Sabei FY, Mohite A, Kole K, Mhatre S, Jha NK, Manjappa A, Singh SK, Dua K, Disouza J, Patravale V. Co-crystal nanoarchitectonics as an emerging strategy in attenuating cancer: Fundamentals and applications. J Control Release 2023; 353:1150-1170. [PMID: 36566843 DOI: 10.1016/j.jconrel.2022.12.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
Cancer ranks as the second foremost cause of death in various corners of the globe. The clinical uses of assorted anticancer therapeutics have been limited owing to the poor physicochemical attributes, pharmacokinetic performance, and lethal toxicities. Various sorts of co-crystals or nano co-crystals or co-crystals-laden nanocarriers have presented great promise in targeting cancer via improved physicochemical attributes, pharmacokinetic performance, and reduced toxicities. These systems have also demonstrated the controlled cargo release and passive targeting via enhanced permeation and retention (EPR) effect. In addition, regional delivery of co-crystals via inhalation and transdermal route displayed remarkable potential in targeting lung and skin cancer effectively. However, more research is required on the use of co-crystals in cancer and their commercialization. The present review mainly emphasizes co-crystals as emerging avenues in the treatment of various cancers by modulating the physicochemical and pharmacokinetic attributes of approved anticancer therapeutics. The worth of co-crystals in cancer treatment, computational paths in the co-crystals screening, diverse experimental techniques of co-crystals fabrication, and sorts of co-crystals and their noteworthy applications in targeting cancer are also discussed. Besides, the game changer approaches like nano co-crystals and co-crystals-laden nanocarriers, and co-crystals in regional delivery in cancer are also explained with reported case studies. Furthermore, regulatory directives for pharmaceutical co-crystals and their scale-up, and challenges are also highlighted with concluding remarks and future initiatives. In essence, co-crystals and nano co-crystals emerge to be a promising strategy in overwhelming cancers through improving anticancer efficacy, safety, patient compliance, and reducing the cost.
Collapse
Affiliation(s)
- Popat Kumbhar
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra 416113, India
| | - Kaustubh Kolekar
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra 416113, India
| | - Chinmayee Khot
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra 416113, India
| | - Swati Dabhole
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra 416113, India
| | - Ahmad Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Fahad Y Sabei
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Akshay Mohite
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra 416113, India
| | - Kapil Kole
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra 416113, India
| | - Susmit Mhatre
- Department of Pharmacy Sciences, School of Pharmacy and Health Professionals, Creighton University, Omaha, NE 68178, USA
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, 201310, Uttar Pradesh, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
| | - Arehalli Manjappa
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra 416113, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, India
| | - John Disouza
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra 416113, India.
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra 400019, India.
| |
Collapse
|
9
|
Yu YM, Bu FZ, Liu L, Yan CW, Wu ZY, Li YT. A novel sustained-release formulation of 5-fluorouracil-phenylalanine cocrystal self-assembled by cocrystal-entrapped micelle strategy displays enhanced antitumor efficacy. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Wang Z, Xie Y, Yu M, Yang S, Lu Y, Du G. Recent Advances on the Biological Study of Pharmaceutical Cocrystals. AAPS PharmSciTech 2022; 23:303. [DOI: 10.1208/s12249-022-02451-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022] Open
|
11
|
Hao H, Jia X, Ren T, Du Y, Wang J. Novel insight into the mechanism underlying synergistic cytotoxicity from two components in 5-Fluorouracil-phenylalanine co-crystal based on cell metabolomics. Eur J Pharm Biopharm 2022; 180:181-189. [DOI: 10.1016/j.ejpb.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/21/2022] [Accepted: 10/03/2022] [Indexed: 11/04/2022]
|
12
|
Zhang Y, Zhang Y, Liu L, Feng Y, Wu L, Zhang L, Zhang Y, Zou D, Liu Y. Assembly of two pharmaceutical salts of sparfloxacin with pyrocatechuic acid: Enhancing in vitro antibacterial activity of sparfloxacin by improving the solubility and permeability. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
13
|
An innovative rhein-matrine cocrystal: Synthesis, characterization, formation mechanism and pharmacokinetic study. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
14
|
Bu FZ, Yu YM, Shen YL, Liu L, Yan CW, Wu ZY, Li YT. Cocrystallization-driven self-assembly with vanillic acid offers a new opportunity for surmounting fast and excessive absorption issues of antifungal drug 5-fluorocytosine: a combined theoretical and experimental research. CrystEngComm 2022. [DOI: 10.1039/d2ce00114d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The cocrystal of 5-fluorocytosine (FCY) with vanillic acid (VAA) was assembled via a cocrystallization technique, giving a novel understanding for conquering the dose-limited hepatotoxicity caused by the rapid and almost complete absorption of FCY.
Collapse
Affiliation(s)
- Fan-Zhi Bu
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China
| | - Yue-Ming Yu
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China
| | - Yu-Li Shen
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China
| | - Lu Liu
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China
| | - Cui-Wei Yan
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China
| | - Zhi-Yong Wu
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 266003, PR China
| | - Yan-Tuan Li
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 266003, PR China
| |
Collapse
|
15
|
Freitas JTJ, Diniz LF, Gomes DS, de Paula PMAF, de Castro SHA, Martins LS, Silva DF, Horta ALM, Guimarães FAS, Calisto VFM, Diniz R. Energy framework and solubility: a new predictive model in the evaluation of the structure–property relationship of pharmaceutical solid forms. CrystEngComm 2022. [DOI: 10.1039/d2ce00818a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Crystal structures with lower interaction energy tend to present higher aqueous solubility.
Collapse
Affiliation(s)
- Jennifer T. J. Freitas
- Grupo de Cristalografia Química (GCQ), Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901-Belo Horizonte, MG, Brazil
| | - Luan F. Diniz
- Grupo de Cristalografia Química (GCQ), Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901-Belo Horizonte, MG, Brazil
- Laboratório de Controle de Qualidade de Medicamentos e Cosméticos, Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
| | - Daniele S. Gomes
- Grupo de Cristalografia Química (GCQ), Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901-Belo Horizonte, MG, Brazil
| | - Pedro M. A. F. de Paula
- Grupo de Cristalografia Química (GCQ), Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901-Belo Horizonte, MG, Brazil
| | - Sérgio H. A. de Castro
- Grupo de Cristalografia Química (GCQ), Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901-Belo Horizonte, MG, Brazil
| | - Larissa S. Martins
- Grupo de Cristalografia Química (GCQ), Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901-Belo Horizonte, MG, Brazil
| | - Daniely F. Silva
- Grupo de Cristalografia Química (GCQ), Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901-Belo Horizonte, MG, Brazil
| | - Ana L. M. Horta
- Grupo de Cristalografia Química (GCQ), Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901-Belo Horizonte, MG, Brazil
| | - Felipe A. S. Guimarães
- Grupo de Cristalografia Química (GCQ), Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901-Belo Horizonte, MG, Brazil
| | - Victória F. M. Calisto
- Grupo de Cristalografia Química (GCQ), Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901-Belo Horizonte, MG, Brazil
| | - Renata Diniz
- Grupo de Cristalografia Química (GCQ), Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901-Belo Horizonte, MG, Brazil
| |
Collapse
|
16
|
Yang X, Chen DF, Li LS, Zhao XJ, Zhao MX. Mesoporous silica nanoparticles loaded with fluorescent coumarin-5-fluorouracil conjugates as mitochondrial-targeting theranostic probes for tumor cells. NANOTECHNOLOGY 2021; 32:455101. [PMID: 34340227 DOI: 10.1088/1361-6528/ac19d6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
In this study, a nanodrug carrier (mesoporous silica nanoparticle (MSN)-SS-cysteamine hydrochloride (CS)-hyaluronic acid (HA)) for targeted drug delivery was prepared using MSNs, in which HA was used as a targeting ligand and blocking agent to control drug release. Coumarin is a fluorescent molecule that targets mitochondria. Two conjugates (XDS-DJ and 5-FUA-4C-XDS) were synthesized by chemically coupling nitrogen mustard and 5-fluorouracil with coumarin, which was further loaded into MSN-SS-CS-HA nanocarriers. MTT analysis demonstrated that the nanocomposite MSN-SS-CS@5-FUA-4C-XDS/HA displayed stronger cytotoxicity toward HCT-116 cells than HeLa or QSG-7701 cells. Furthermore, MSN-SS-CS@5-FUA-4C-XDS/HA was able to target the mitochondria of HCT-116 cells, causing decreased mitochondrial membrane potential and excessive production of reactive oxygen species. These results indicate that MSN-SS-CS@5-FUA-4C-XDS/HA has the potential to be a nanodrug delivery system for the treatment of colon cancer.
Collapse
Affiliation(s)
- Xiaojing Yang
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng 475004, People's Republic of China
| | - Di-Feng Chen
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng 475004, People's Republic of China
| | - Lin-Song Li
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng 475004, People's Republic of China
| | - Xue-Jie Zhao
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng 475004, People's Republic of China
| | - Mei-Xia Zhao
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng 475004, People's Republic of China
| |
Collapse
|
17
|
Ortiz-de León C, MacGillivray LR. Clues from cocrystals: a ternary solid, polymorphism, and rare supramolecular isomerism involving resveratrol and 5-fluorouracil. Chem Commun (Camb) 2021; 57:3809-3811. [PMID: 33876128 DOI: 10.1039/d0cc08388g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We describe a supramolecular synthesis of a ternary cocrystal involving resveratrol and 5-fluorouracil (5-fu) with trans-bis(4-pyridyl)ethylene (bpe). We also have discovered a polymorph of a binary cocrystal involving 5-fu and bpe that originates from rare supramolecular isomerism.
Collapse
|