1
|
Kavanagh ON. An analysis of multidrug multicomponent crystals as tools for drug development. J Control Release 2024; 369:1-11. [PMID: 38513727 DOI: 10.1016/j.jconrel.2024.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
In a typical tablet or capsule formulation, the active drug is often present as a crystalline solid. This solid emerges from the relationships between the individual atoms within the crystal, which confer a distinct set of physical properties. Then, it follows that if we modify the packing arrangement of the individual molecules within these crystals, we can modulate their properties. This can be achieved by crystal engineering. Crystal engineering has also seen teams arrange multiple drug molecules within the same crystal, resulting in dramatic improvements to drug properties in the lab. The success of drugs like SEGLENTIS® and Entresto® have revitalised interest in these forms, but controversy surrounding their translation has prompted this reconsideration of their clinical utility. I reflect on the current academic, clinical, and commercial interest in multidrug multicomponent crystals, drawing parallels with developments pre-Bragg, contributing to a nuanced understanding of the potential and limitations of crystal engineering in pharmaceutical applications.
Collapse
Affiliation(s)
- Oisín N Kavanagh
- School of Pharmacy, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
2
|
Mansour RSH, Al Khawaja AY, Hamdan II, Khalil EA. IR microspectroscopic investigation of the interaction of some losartan salts with human stratum corneum protein and its effect on losartan transdermal permeation. PLoS One 2023; 18:e0287267. [PMID: 37319232 PMCID: PMC10270334 DOI: 10.1371/journal.pone.0287267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/01/2023] [Indexed: 06/17/2023] Open
Abstract
The interaction of pharmacologically active drugs with SC biochemical components is underestimated in pharmaceutical research. The aim of this research was to illustrate that some drugs intended for transdermal delivery could interact with the protein component of SC. Such interactions could be in favor of or opposition to their percutaneous absorption. IR microspectroscopy was used to delineate possible interaction of SC keratin with three losartan salts LOS-K, LOS-DEA and LOS-AML salts in addition to AML-BES salt. The results of PCA, combined with comparisons of average second derivative spectra of SC samples treated with these salts and the control SC, showed that LOS-DEA did not interact with SC, thus providing base line permeation of losartan. AML-BES, LOS-AML and LOS-K salts modified the conformational structure of keratin. The disorganization effect on the α-helical structure and induced formation of parallel β-sheets and random coils were in the order of AML-BES˃LOS-AML˃LOS-K. The order of the impact of treatments which resulted in increased formation of β-turns was AML-BES˃LOS-AML. The formation of antiparallel β-sheets was manifested by LOS-AML. Thus, the overall effect of these salts on the SC protein was AML-BES˃LOS-AML˃LOS-K. The impact of LOS-K was associated with improved permeation whereas the impact of LOS-AML was associated with hindered permeation of both losartan and amlodipine. There is a possibility that losartan and amlodipine when present in combination inside SC, their binding to the protein is enhanced leading to being retained within SC.
Collapse
|
3
|
Jones ECL, Goldsmith KE, Ward MR, Bimbo LM, Oswald IDH. Exploring the thermal behaviour of the solvated structures of nifedipine. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2023; 79:164-175. [PMID: 36920879 PMCID: PMC10088478 DOI: 10.1107/s2052520623001282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Understanding the solvation and desolvation of pharmaceutical materials is an important part of materials discovery and development. In situ structural data are vital to understand the changes to crystal form that may occur in the system. In this study, the isolation and characterization of seven solvates of the L-type calcium channel antagonist, nifedipine, is described using variable-temperature powder X-ray diffraction so that the structural evolution as a function of temperature can be followed. The solvates reported herein can be split into those that are structurally similar to the previously reported dimethyl sulfoxide (DMSO) and dioxane solvates and those that have a novel packing arrangement. Of particular note is the solvate with tetrahydrofuran (THF) which has a hydrogen-bonding motif between the nifedipine molecules very similar to that of metastable β-nifedipine. In addition to variable-temperature X-ray diffraction, the stability of the solid forms was assessed using differential scanning calorimetry and thermogravimetric analysis and indicates that in all cases desolvation results in the thermodynamically stable α-polymorph of nifedipine even with the THF solvate. From the diffraction data the pathway of desolvation during heating of the DMF solvate showed conversion to another likely 1:1 polymorph before desolvation to α-nifedipine. The desolvation of this material indicated a two-stage process; first the initial loss of 90% of the solvent before the last 10% is lost on melting. The methanol solvate shows interesting negative thermal expansion on heating, which is rarely reported in organic materials, but this behaviour can be linked back to the winerack-type hydrogen-bonding pattern of the nifedipine molecules.
Collapse
Affiliation(s)
- Eleanor C. L. Jones
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, United Kingdom
| | - Kate E. Goldsmith
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, United Kingdom
| | - Martin R. Ward
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, United Kingdom
| | - Luis M. Bimbo
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, United Kingdom
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Centre for Neuroscience and Cell Biology and Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Iain D. H. Oswald
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, United Kingdom
| |
Collapse
|
4
|
Wang Y, Wang L, Zhang F, Wang N, Gao Y, Xiao Y, Wang Z, Bao Y. Structure analysis and insight into hydrogen bond and van der waals interactions of etoricoxib cocrystals and cocrystal solvate. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Mirocki A, Sikorski A. Structural Characterization of Multicomponent Crystals Formed from Diclofenac and Acridines. MATERIALS 2022; 15:ma15041518. [PMID: 35208056 PMCID: PMC8876612 DOI: 10.3390/ma15041518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/04/2022] [Accepted: 02/14/2022] [Indexed: 12/28/2022]
Abstract
Multicomponent crystals containing diclofenac and acridine (1) and diclofenac and 6,9-diamino-2-ethoxyacridine (2) were synthesized and structurally characterized. The single-crystal XRD measurements showed that compound 1 crystallizes in the triclinic P-1 space group as a salt cocrystal with one acridinium cation, one diclofenac anion, and one diclofenac molecule in the asymmetric unit, whereas compound 2 crystallizes in the triclinic P-1 space group as an ethanol solvate monohydrate salt with one 6,9-diamino-2-ethoxyacridinium cation, one diclofenac anion, one ethanol molecule, and one water molecule in the asymmetric unit. In the crystals of the title compounds, diclofenac and acridines ions and solvent molecules interact via N–H⋯O, O–H⋯O, and C–H⋯O hydrogen bonds, as well as C–H⋯π and π–π interactions, and form heterotetramer bis[⋯cation⋯anion⋯] (1) or heterohexamer bis[⋯cation⋯ethanol⋯anion⋯] (2). Moreover, in the crystal of compound 1, acridine cations and diclofenac anions interact via N–H⋯O hydrogen bond, C–H⋯π and π–π interactions to produce blocks, while diclofenac molecules interact via C–Cl⋯π interactions to form columns. In the crystal of compound 2, the ethacridine cations interact via C–H⋯π and π–π interactions building blocks, while diclofenac anions interact via π–π interactions to form columns.
Collapse
Affiliation(s)
- Artur Mirocki
- Correspondence: (A.M.); (A.S.); Tel.: +48-58-523-5112 (A.M. & A.S.)
| | - Artur Sikorski
- Correspondence: (A.M.); (A.S.); Tel.: +48-58-523-5112 (A.M. & A.S.)
| |
Collapse
|
6
|
Zhoujin Y, Li Y, Zhang M, Parkin S, Guo J, Li T, Yu F, Long S. Polymorphism and cocrystal salt formation of 2-((2,6-dichlorophenyl)amino)benzoic acid, harvest of a second form of 2-((2,6-dimethylphenyl)amino)benzoic acid, and isomorphism between the two systems. CrystEngComm 2022. [DOI: 10.1039/d1ce01407b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Isomorphism and isostructurality were observed between form I of 2-((2,6-dimethylphenyl)amino)benzoic acid and its analog 2-((2,6-dichlorophenyl)amino)benzoic acid, which suggests double Cl–CH3 exchange also leads to structural similarity.
Collapse
Affiliation(s)
- Yunping Zhoujin
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China
| | - Yuping Li
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China
| | - Mingtao Zhang
- Computational Center for Molecular Science, College of Chemistry, Nankai University, Tianjin, China
| | - Sean Parkin
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Ju Guo
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China
| | - Tonglei Li
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, Indiana, USA
| | - Faquan Yu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China
| | - Sihui Long
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China
| |
Collapse
|