1
|
Cheng Q, Ma Q, Pei H, Liang H, Zhang X, Jin X, Liu N, Guo R, Mo Z. Chiral metal-organic frameworks materials for racemate resolution. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
2
|
Hall LA, D'Alessandro DM, Lakhwani G. Chiral metal-organic frameworks for photonics. Chem Soc Rev 2023; 52:3567-3590. [PMID: 37161868 DOI: 10.1039/d2cs00129b] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Recently, there has been significant interest in the use of chiral metal-organic frameworks (MOFs) and coordination polymers (CPs) for photonics applications. The promise of these materials lies in the ability to tune their properties through judicious selection of the metal and ligand components. Additionally, the interaction of guest species with the host framework can be exploited to realise new functionalities. In this review, we outline the methods for synthesising chiral MOFs and CPs, then analyse the recent innovations in their use for various optical and photonics applications. We focus on two emerging directions in the field of MOF chemistry - circularly polarised luminescence (CPL) and chiroptical switching - as well as the latest developments in the use of these materials for second-order nonlinear optics (NLO), particularly second-harmonic generation (SHG). The current challenges encountered so far, their possible solutions, and key directions for further research are also outlined. Overall, given the results demonstrated to date, chiral MOFs and CPs show great promise for use in future technologies such as optical communication and computing, optical displays, and all-optical devices.
Collapse
Affiliation(s)
- Lyndon A Hall
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Deanna M D'Alessandro
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia.
- The University of Sydney Nano Institute, NSW, 2006, Australia
| | - Girish Lakhwani
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia.
- The University of Sydney Nano Institute, NSW, 2006, Australia
- ARC Centre of Excellence in Exciton Science, The University of Sydney, NSW, 2006, Australia
- Institute of Photonics and Optical Science, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
3
|
Treger M, Hannebauer A, Schaate A, Budde JL, Behrens P, Schneider AM. Tuning the optical properties of the metal-organic framework UiO-66 via ligand functionalization. Phys Chem Chem Phys 2023; 25:6333-6341. [PMID: 36779311 DOI: 10.1039/d2cp03746g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Metal-organic frameworks (MOFs) are a promising class of materials for optical applications, especially due to their modular design which allows fine-tuning of the relevant properties. The present theoretical study examines the Zr-based UiO-66-MOF and derivatives of it with respect to their optical properties. Starting from the well-known monofunctional amino- and nitro-functionalized UiO-66 derivatives, we introduce novel UiO-66-type MOFs containing bifunctional push-pull 1,4-benzenedicarboxylate (bdc) linkers. The successful synthesis of such a novel UiO-66 derivative is also reported. It was carried out using a para-nitroaniline (PNA)-based bdc-analogue linker. Applying density functional theory (DFT), suitable models for all UiO-66-MOF analogues were generated by assessing different exchange-correlation functionals. Afterwards, HSE06 hybrid functional calculations were performed to obtain the electronic structures and optical properties. The detailed HSE06 electronic structure calculations were validated with UV-Vis measurements to ensure reliable results. Finally, the refractive index dispersion of the seven UiO-66-type materials is compared, showing the possibility to tailor the optical properties by the use of functionalized linker molecules. Specifically, the refractive index can be varied over a wide range from 1.37 to 1.78.
Collapse
Affiliation(s)
- Marvin Treger
- Institute of Inorganic Chemistry, Leibniz University Hannover, 30167, Hannover, Germany.
- Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering - Innovation Across Disciplines), Hannover, Germany
| | - Adrian Hannebauer
- Institute of Inorganic Chemistry, Leibniz University Hannover, 30167, Hannover, Germany.
| | - Andreas Schaate
- Institute of Inorganic Chemistry, Leibniz University Hannover, 30167, Hannover, Germany.
- Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering - Innovation Across Disciplines), Hannover, Germany
| | - Jan L Budde
- Institute of Inorganic Chemistry, Leibniz University Hannover, 30167, Hannover, Germany.
| | - Peter Behrens
- Institute of Inorganic Chemistry, Leibniz University Hannover, 30167, Hannover, Germany.
- Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering - Innovation Across Disciplines), Hannover, Germany
| | - Andreas M Schneider
- Institute of Inorganic Chemistry, Leibniz University Hannover, 30167, Hannover, Germany.
- Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering - Innovation Across Disciplines), Hannover, Germany
| |
Collapse
|
4
|
Berijani K, Chang LM, Gu ZG. Chiral templated synthesis of homochiral metal-organic frameworks. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
5
|
Cao XL, Liu Y, Li GL, Lu ZX, Li S, Cao ZM, Huang YG. A 3D supramolecular framework assembled via π⋅⋅⋅π interactions and CH⋅⋅⋅Cl hydrogen-bonds with second-harmonic generation response. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Huang Y, Wang Y, Ding Q, Zhao Y. Construction and second‐order nonlinear optical properties of two 1D zigzag chains with crisscross and parallel arrangements. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yong‐Qing Huang
- Department of Applied Chemistry College of Chemical and Biological Engineering Shandong University of Science and Technology 266590 Qingdao China
| | - Yang Wang
- Department of Applied Chemistry College of Chemical and Biological Engineering Shandong University of Science and Technology 266590 Qingdao China
| | - Qi‐Hui Ding
- Department of Applied Chemistry College of Chemical and Biological Engineering Shandong University of Science and Technology 266590 Qingdao China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University 210093 Nanjing China
| |
Collapse
|