1
|
Zhang Y, Li H, Wang J, Silvester DS, Warr GG, Atkin R. Potential-dependent superlubricity of stainless steel and Au(111) using a water-in-surface-active ionic liquid mixture. J Colloid Interface Sci 2025; 678:355-364. [PMID: 39208763 DOI: 10.1016/j.jcis.2024.08.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
HYPOTHESIS The friction and interfacial nanostructure of a water-in-surface-active ionic liquid mixture, 1.6 M 1-butyl-3-methylimidazolium 1,4-bis-2-ethylhexylsulfosuccinate ([BMIm][AOT]), can be tuned by applying potential on Au(111) and stainless steel. EXPERIMENTAL Atomic force microscopy (AFM) was used to examine the friction and interfacial nanostructure of 1.6 M [BMIm][AOT] on Au(111) and stainless steel at different potentials. FINDINGS Superlubricity (vanishing friction) is observed for both surfaces at OCP+1.0 V up to a surface-dependent critical normal force due to [AOT]- bilayers adsorbing strongly to the positively charged surface thus allowing AFM tip to slide over solution-facing hydrated anion charged groups. High-resolution AFM imaging reveals ripple-like features within near-surface layers, with the smallest amplitudes at OCP+1 V, indicating the highest structural stability and resistance to thermal fluctuations due to highly ordered boundary [AOT]- bilayers templating robust near-surface layers. Exceeding the critical normal force at OCP+1.0 V causes the AFM tip to penetrate the hydrated [AOT]- layer and slide over alkyl chains, increasing friction. At OCP and OCP-1.0 V, higher friction correlates with more pronounced ripples, attributed to the rougher templating [BMIm]+ boundary layer. Kinetic experiments show that switching from OCP-1.0 V to OCP+1.0 V achieves superlubricity within 15 s, enabling real-time friction control.
Collapse
Affiliation(s)
- Yunxiao Zhang
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Hua Li
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia; Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, Western Australia, Australia.
| | - Jianan Wang
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Debbie S Silvester
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth 6845, Western Australia, Australia
| | - Gregory G Warr
- School of Chemistry and Sydney Nano Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Rob Atkin
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
2
|
Bao Y, Nishiwaki Y, Kawano T, Utsunomiya T, Sugimura H, Ichii T. Molecular-Resolution Imaging of Ionic Liquid/Alkali Halide Interfaces with Varied Surface Charge Densities via Atomic Force Microscopy. ACS NANO 2024; 18:25302-25315. [PMID: 39185607 DOI: 10.1021/acsnano.4c08838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
When in contact with charged solid surfaces, ionic liquids (ILs) are known to form solvation structures consisting of alternating cation and anion layers. This phenomenon is considered to originate from the adsorption layer of counterions overcompensating the surface charge, so-called overscreening. However, the response of these layers to surfaces with near-zero or extremely high surface charge density (σ) remains inadequately understood. Here, we probe the solvation structure of ILs on alkali halide surfaces with varied surface orientations: nearly zero-charged RbI(100) and highly charged RbI(111), by employing frequency modulation atomic force microscopy with atomic resolution. Two commonly used ILs are examined in this study: 1-methyl-1-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([C3mpyr][NTf2]) and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C2mim][NTf2]). On RbI(100) surfaces with near zero σ, we observe alternating cation and anion layers, diverging from the previously proposed monolayer model for IL/alkali halide(100) interfaces. These results support the argument that overscreening occurs under low σ, even approaching zero, and reconcile conflicting experimental conclusions about low σ systems. On RbI(111) surfaces with high σ, we identify solvation structures consisting of two consecutive counterion layers. This structure aligns with the theoretically predicted crowding; a phenomenon rarely observed in commonly used ILs due to typically unreachable σ in electrochemical IL/electrode systems. Our findings indicate that alkali halide(111) surfaces are potentially valuable for exploring the crowding phenomenon in ILs, addressing the current scarcity of experimental observations.
Collapse
Affiliation(s)
- Yifan Bao
- Department of Materials Science and Engineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuto Nishiwaki
- Department of Materials Science and Engineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Touma Kawano
- Department of Materials Science and Engineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Toru Utsunomiya
- Department of Materials Science and Engineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyuki Sugimura
- Department of Materials Science and Engineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takashi Ichii
- Department of Materials Science and Engineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
3
|
Zhang S, Yan Y, Zhou Q, Fan Y. Ionic Liquid-Based Extraction Strategy for the Efficient and Selective Recovery of Scandium. Molecules 2024; 29:4007. [PMID: 39274855 PMCID: PMC11396334 DOI: 10.3390/molecules29174007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/05/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
The recovery of scandium (Sc) from highly acidic industrial effluents is currently hindered by the use of large quantities of flammable and toxic organic solvents. This study developed an extraction system using ionic liquids (ILs) and phenylphosphinic acid (PPAH) as diluents and an extractant, respectively, to selectively recover Sc from the aqueous phase. The effect of IL chemical structure, aqueous pH and temperature on the extraction of Sc was systematically investigated and the findings revealed that ILs with longer alkyl side chains had reduced Sc extraction ability due to the presence of continuous nonpolar domains formed by the self-aggregation of the IL alkyl side chain. The IL/PPAH system maintained high extraction ability toward Sc across a wide temperature range (288 K to 318 K) and the extraction efficiency of Sc could be improved significantly by increasing the aqueous pH. The extraction process involved proton exchange, resulting in the formation of a metal-ligand complex (Sc(PPA)3).
Collapse
Affiliation(s)
- Sheli Zhang
- School of Science and Technology, Jiaozuo Teachers College, Jiaozuo 454000, China
| | - Yuerong Yan
- School of Science and Technology, Jiaozuo Teachers College, Jiaozuo 454000, China
| | - Qiang Zhou
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Yunchang Fan
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| |
Collapse
|
4
|
Li S, Hammond OS, Nelson A, de Campo L, Moir M, Recsei C, Shimpi MR, Glavatskih S, Pilkington GA, Mudring AV, Rutland MW. Anion Architecture Controls Structure and Electroresponsivity of Anhalogenous Ionic Liquids in a Sustainable Fluid. J Phys Chem B 2024; 128:4231-4242. [PMID: 38639329 DOI: 10.1021/acs.jpcb.3c08189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Three nonhalogenated ionic liquids (ILs) dissolved in 2-ethylhexyl laurate (2-EHL), a biodegradable oil, are investigated in terms of their bulk and electro-interfacial nanoscale structures using small-angle neutron scattering (SANS) and neutron reflectivity (NR). The ILs share the same trihexyl(tetradecyl)phosphonium ([P6,6,6,14]+) cation paired with different anions, bis(mandelato)borate ([BMB]-), bis(oxalato)borate ([BOB]-), and bis(salicylato)borate ([BScB]-). SANS shows a high aspect ratio tubular self-assembly structure characterized by an IL core of alternating cations and anions with a 2-EHL-rich shell or corona in the bulk, the geometry of which depends upon the anion structure and concentration. NR also reveals a solvent-rich interfacial corona layer. Their electro-responsive behavior, pertaining to the structuring and composition of the interfacial layers, is also influenced by the anion identity. [P6,6,6,14][BOB] exhibits distinct electroresponsiveness to applied potentials, suggesting an ion exchange behavior from cation-dominated to anion-rich. Conversely, [P6,6,6,14][BMB] and [P6,6,6,14][BScB] demonstrate minimal electroresponses across all studied potentials, related to their different dissociative and diffusive behavior. A mixed system is dominated by the least soluble IL but exhibits an increase in disorder. This work reveals the subtlety of anion architecture in tuning bulk and electro-interfacial properties, offering valuable molecular insights for deploying nonhalogenated ILs as additives in biodegradable lubricants and supercapacitors.
Collapse
Affiliation(s)
- Sichao Li
- Division of Surface and Corrosion Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Oliver S Hammond
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-114 18, Sweden
- intelligent Advanced Materials, Department of Biological & Chemical Engineering and iNANO, Aarhus University, Aarhus C 8000, Denmark
| | - Andrew Nelson
- Australian Centre for Neutron Scattering, ANSTO, Lucas Heights, New South Wales 2234, Australia
| | - Liliana de Campo
- Australian Centre for Neutron Scattering, ANSTO, Lucas Heights, New South Wales 2234, Australia
| | - Michael Moir
- National Deuteration Facility, ANSTO, Lucas Heights, New South Wales 2234, Australia
| | - Carl Recsei
- National Deuteration Facility, ANSTO, Lucas Heights, New South Wales 2234, Australia
| | - Manishkumar R Shimpi
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-114 18, Sweden
- Chemistry of Interfaces, Department of Civil and Environmental Engineering, Luleå University of Technology, Luleå SE-97187, Sweden
| | - Sergei Glavatskih
- System and Component Design, Department of Engineering Design, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
- Department of Electromechanical, Systems and Metal Engineering, Ghent University, Ghent B-9052, Belgium
| | - Georgia A Pilkington
- Division of Surface and Corrosion Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Anja-Verena Mudring
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-114 18, Sweden
- intelligent Advanced Materials, Department of Biological & Chemical Engineering and iNANO, Aarhus University, Aarhus C 8000, Denmark
- Department of Physics, Umeå University, Umeå SE-901 87, Sweden
| | - Mark W Rutland
- Division of Surface and Corrosion Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
- Bioeconomy and Health Department Materials and Surface Design, RISE Research Institutes of Sweden, Stockholm SE-114 28, Sweden
- Laboratoire de Tribologie et Dynamique des Systèmes, École Centrale de Lyon, Ecully Cedex 69134, France
| |
Collapse
|
5
|
Pontoni D, DiMichiel M, Murphy BM, Honkimäki V, Deutsch M. Ordering of ionic liquids at a charged sapphire interface: Evolution with cationic chain length. J Colloid Interface Sci 2024; 661:33-45. [PMID: 38295701 DOI: 10.1016/j.jcis.2024.01.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 02/27/2024]
Abstract
HYPOTHESIS Room Temperature Ionic Liquids (RTILs) bulk's molecular layering dominates their structure also at the RTIL/sapphire interface, increasing the layer spacing with the cationic alkyl chain length n. However, the negatively-charged sapphire surface compresses the layers, increases the layering range, and affects the intra-layer structure in yet unknown ways. EXPERIMENTS X-ray reflectivity (XR) off the RTIL/sapphire interface, for a broad homologous RTIL series 1-alkyl-3-methylimidazolium bis(trifluoromethansulfonyl)imide, hitherto unavailable for any RTIL. FINDINGS RTIL layers against the sapphire, exhibit two spacings: da and db. da is n-varying, follows the behavior of the bulk spacing but exhibits a downshift, thus showing significant layer compression, and over twofold polar slab thinning. The latter suggests exclusion of anions from the interfacial region due to the negative sapphire charging by x-ray-released electrons. The layering range is larger than the bulk's. db is short and near n-independent, suggesting polar moieties' layering, the coexistence mode of which with the da-spaced layering is unclear. Comparing the present layering with the bulk's and the RTIL/air interface's provides insight into the Coulomb and dispersion interaction balance dominating the RTIL's structure and the impact thereon of the presence of a charged solid interface.
Collapse
Affiliation(s)
- Diego Pontoni
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38043 Grenoble, France
| | - Marco DiMichiel
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38043 Grenoble, France
| | - Bridget M Murphy
- Institute of Experimental and Applied Physics, Kiel University, Kiel D-24098, Germany; Ruprecht-Haensel Laboratory, Kiel University, Kiel D-24118, Germany
| | - Veijo Honkimäki
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38043 Grenoble, France
| | - Moshe Deutsch
- Physics Dept. & Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel.
| |
Collapse
|
6
|
Zhang S, Wu S, Hwang J, Matsumoto K, Hagiwara R. Unprotected Organic Cations─The Dilemma of Highly Li-Concentrated Ionic Liquid Electrolytes. J Am Chem Soc 2024; 146:8352-8361. [PMID: 38494762 DOI: 10.1021/jacs.3c14110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Highly Li-concentrated electrolytes have been widely studied to harness their uniquely varying bulk and interface properties that arise from their distinctive physicochemical properties and coordination structures. Similar strategies have been applied in the realm of ionic liquid electrolytes to exploit their improved functionalities. Despite these prospects, the impact of organic cation behavior on interfacial processes remains largely underexplored compared to the widely studied anion behavior. The present study demonstrates that the weakened interactions between cations and anions engender "unprotected" organic cations in highly Li-concentrated ionic liquid electrolytes, leading to the decomposition of electrolytes during the initial charge. This decomposition behavior is manifested by the substantial irreversible capacities and inferior initial Coulombic efficiencies observed during the initial charging of graphite negative electrodes, resulting in considerable electrolyte consumption and diminished energy densities in full-cell configurations. The innate cation behavior is ascertained by examining the coordination environment of ionic liquid electrolytes with varied Li concentrations, where intricate ionic interactions between organic cations and anions are unveiled. In addition, anionic species with high Lewis basicity were introduced to reinforce the ionic interactions involving organic cations and improve the initial Coulombic efficiency. This study verifies the role of unprotected organic cations while highlighting the significance of the coordination environment in the performance of ionic liquid electrolytes.
Collapse
Affiliation(s)
- Shaoning Zhang
- Graduate School of Energy Science, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shengan Wu
- Graduate School of Energy Science, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Jinkwang Hwang
- Graduate School of Energy Science, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuhiko Matsumoto
- Graduate School of Energy Science, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Rika Hagiwara
- Graduate School of Energy Science, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
7
|
Li S, Pilkington GA, Mehler F, Hammond OS, Boudier A, Vorobiev A, Glavatskih S, Rutland MW. Tuneable interphase transitions in ionic liquid/carrier systems via voltage control. J Colloid Interface Sci 2023; 652:1240-1249. [PMID: 37657223 DOI: 10.1016/j.jcis.2023.08.111] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/09/2023] [Accepted: 08/18/2023] [Indexed: 09/03/2023]
Abstract
The structure and interaction of ionic liquids (ILs) influence their interfacial composition, and their arrangement (i.e., electric double-layer (EDL) structure), can be controlled by an electric field. Here, we employed a quartz crystal microbalance (QCM) to study the electrical response of two non-halogenated phosphonium orthoborate ILs, dissolved in a polar solvent at the interface. The response is influenced by the applied voltage, the structure of the ions, and the solvent polarizability. One IL showed anomalous electro-responsivity, suggesting a self-assembly bilayer structure of the IL cation at the gold interface, which transitions to a typical EDL structure at higher positive potential. Neutron reflectivity (NR) confirmed this interfacial structuring and compositional changes at the electrified gold surface. A cation-dominated self-assembly structure is observed for negative and neutral voltages, which abruptly transitions to an anion-rich interfacial layer at positive voltages. An interphase transition explains the electro-responsive behaviour of self-assembling IL/carrier systems, pertinent for ILs in advanced tribological and electrochemical contexts.
Collapse
Affiliation(s)
- Sichao Li
- Division of Surface and Corrosion Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Georgia A Pilkington
- Division of Surface and Corrosion Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Filip Mehler
- Division of Surface and Corrosion Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Oliver S Hammond
- Department of Materials and Environmental Chemistry, Stockholm University, SE-114 18 Stockholm, Sweden; Department of Biological and Chemical Engineering, Aarhus University, Aarhus C 8000 Denmark
| | - Anthony Boudier
- Department of Materials and Environmental Chemistry, Stockholm University, SE-114 18 Stockholm, Sweden
| | - Alexei Vorobiev
- Department of Physics and Astronomy, Division of Materials Physics, Uppsala University, SE-751 20 Uppsala, Sweden
| | - Sergei Glavatskih
- System and Component Design, Department of Engineering Design, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden; School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia; Department of Electromechanical, Systems and Metal Engineering, Ghent University, B-9052 Ghent, Belgium
| | - Mark W Rutland
- Division of Surface and Corrosion Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden; School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia; Bioeconomy and Health Department Materials and Surface Design, RISE Research Institutes of Sweden, SE-114 28 Stockholm, Sweden; Laboratoire de Tribologie et Dynamique des Systèmes, École Centrale de Lyon, 69134 Ecully Cedex, France.
| |
Collapse
|
8
|
Bou Tannous L, Simoes Santos M, Gong Z, Haumesser PH, Benayad A, Padua AAH, Steinberger A. Effect of Surface Chemistry on the Electrical Double Layer in a Long-Chain Ionic Liquid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16785-16796. [PMID: 37970757 DOI: 10.1021/acs.langmuir.3c02123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Room temperature ionic liquids (ILs) can create a strong accumulation of charges at solid interfaces by forming a very thin and dense electrical double layer (EDL). The structure of this EDL has important consequences in numerous applications involving ILs, for example, in supercapacitors, sensors, and lubricants, by impacting the interfacial capacitance, the charge carrier density of semiconductors, as well as the frictional properties of the interfaces. We have studied the interfacial structure of a long chain imidazolium-based IL (1-octyl-3-methylimidazolium dicyanamide) on several substrates: mica, silica, silicon, and molybdenum disulfide (MoS2), using atomic force microscopy (AFM) experiments and molecular dynamics (MD) simulations. We have observed 3 types of interfacial structures for the same IL, depending on the chemistry of the substrate and the water content, showing that the EDL structure is not an intrinsic property of the IL. We evidenced that at a low water content, neutral and apolar (thus hydrophobic) substrates promote a thin layer structure, where the ions are oriented parallel to the substrate and cations and anions are mixed in each layer. In contrast, a strongly charged (thus hydrophilic) substrate yields an extended structuration into several bilayers, while a heterogeneous layering with loose bilayer regions was observed on an intermediate polar and weakly charged substrate and on an apolar one at a high bulk water content. In the latter case, water contamination favors the formation of bilayer patches by promoting the segregation of the long chain IL into polar and apolar domains.
Collapse
Affiliation(s)
- Layla Bou Tannous
- Laboratoire de Chimie, École Normale Supérieure de Lyon, CNRS, 69364 Lyon, France
- CEA, Leti, Univ. Grenoble Alpes, F-38000 Grenoble, France
| | | | - Zheng Gong
- Laboratoire de Chimie, École Normale Supérieure de Lyon, CNRS, 69364 Lyon, France
| | | | - Anass Benayad
- CEA, Liten, Univ. Grenoble Alpes, F-38000 Grenoble, France
| | - Agilio A H Padua
- Laboratoire de Chimie, École Normale Supérieure de Lyon, CNRS, 69364 Lyon, France
| | - Audrey Steinberger
- Univ Lyon, ENS de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| |
Collapse
|
9
|
Yadav Y, Singh SP. In Situ Measurement of Effective Gate Bias Voltage in Ionic Liquid-Gated Organic Field-Effect Transistors: Exploring Intrinsic Performance and Trap Density of States. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48431-48441. [PMID: 37811786 DOI: 10.1021/acsami.3c07898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Electric double layer (EDL)-mediated transistors with ionic liquid (IL) gating have garnered substantial interest due to their exceptional properties, such as high transconductance and low-voltage operation, positioning them as promising candidates for organic electronics. In this study, we present an in situ measurement of effective gate bias voltage (VGS,eff) in IL-gated organic field-effect transistors (IL-OFETs) using a modified current-voltage measurement configuration. The results reveal a significant deviation between VGS,eff and the applied gate bias (VGS,app), indicating that the EDL at the gate/IL interface screens the applied voltage. It is observed that the screening effect varies depending on the specific cation and anion present in the IL. The evaluation of VGS,eff plays a pivotal role in understanding the intrinsic behavior of IL-OFETs and addresses the challenges associated with accurate performance assessment. Inherently, IL-OFETs demonstrate high transconductance, achieving values of approximately 9 mS while operating at a low threshold voltage of around 0.55 V. Through the acquisition of VGS,eff, we have successfully addressed the limitations impeding the numerical estimation of the trap density of states (trap DOS) in IL-OFETs. Remarkably, our calculations reveal an exceptionally low density of deep traps, which serves as a crucial factor contributing to the near-ideal subthreshold swing (61-68 mV dec-1) observed in IL-OFETs. Further investigations unveil the neutral electrical nature of the IL bulk during OFET operation, confirming the hypothesis that the applied gate bias voltage in electrolyte-gated OFETs drops across the EDLs formed at the interfaces. The impedance spectroscopic (IS) analysis confirms the low contact resistance (≈1 Ω·m) of IL-OFETs calculated using the transition voltage method. The IS analysis also reveals the low-transmissive nature of the IL/organic semiconductor interface. The knowledge gained from this study holds significant implications for realizing high-performance electrolyte-gated OFETs in various applications including digital electronics, energy storage, and sensing. By unraveling the factors influencing the device performance, such as VGS,eff and trap DOS, this research contributes to the advancement of organic electronics and paves the way for future developments in the field.
Collapse
Affiliation(s)
- Yogesh Yadav
- Department of Physics, School of Natural Sciences, Shiv Nadar University, Gautam Budh Nagar, Uttar Pradesh, India 201314
| | - Samarendra P Singh
- Department of Physics, School of Natural Sciences, Shiv Nadar University, Gautam Budh Nagar, Uttar Pradesh, India 201314
| |
Collapse
|
10
|
Hammond OS, Bousrez G, Mehler F, Li S, Shimpi MR, Doutch J, Cavalcanti L, Glavatskih S, Antzutkin ON, Rutland MW, Mudring A. Molecular Architecture Effects on Bulk Nanostructure in Bis(Orthoborate) Ionic Liquids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300912. [PMID: 37395635 PMCID: PMC11497287 DOI: 10.1002/smll.202300912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/11/2023] [Indexed: 07/04/2023]
Abstract
A series of 19 ionic liquids (ILs) based on phosphonium and imidazolium cations of varying alkyl-chain lengths with the orthoborate anions bis(oxalato)borate [BOB]- , bis(mandelato)borate, [BMB]- and bis(salicylato)borate, [BScB]- , are synthesized and studied using small-angle neutron scattering (SANS). All measured systems display nanostructuring, with 1-methyl-3-n-alkyl imidazolium-orthoborates forming clearly bicontinuous L3 spongelike phases when the alkyl chains are longer than C6 (hexyl). L3 phases are fitted using the Teubner and Strey model, and diffusely-nanostructured systems are primarily fitted using the Ornstein-Zernicke correlation length model. Strongly-nanostructured systems have a strong dependence on the cation, with molecular architecture variation explored to determine the driving forces for self-assembly. The ability to form well-defined complex phases is effectively extinguished in several ways: methylation of the most acidic imidazolium ring proton, replacing the imidazolium 3-methyl group with a longer hydrocarbon chain, substitution of [BOB]- by [BMB]- , or exchanging the imidazolium for phosphonium systems, irrespective of phosphonium architecture. The results suggest there is only a small window of opportunity, in terms of molecular amphiphilicity and cation:anion volume matching, for the formation of stable extensive bicontinuous domains in pure bulk orthoborate-based ILs. Particularly important for self-assembly processes appear to be the ability to form H-bonding networks, which offer additional versatility in imidazolium systems.
Collapse
Affiliation(s)
- Oliver S. Hammond
- Department of Materials and Environmental ChemistryStockholm UniversityStockholmSE‐114 18Sweden
- Department of Biological and Chemical Engineering and iNANOAarhus UniversityAarhus C8000Denmark
| | - Guillaume Bousrez
- Department of Materials and Environmental ChemistryStockholm UniversityStockholmSE‐114 18Sweden
- Department of Biological and Chemical Engineering and iNANOAarhus UniversityAarhus C8000Denmark
| | - Filip Mehler
- Division of Surface and Corrosion ScienceSchool of Engineering Sciences in Chemistry, Biotechnology and HealthKTH Royal Institute of TechnologyStockholmSE-100 40Sweden
| | - Sichao Li
- Division of Surface and Corrosion ScienceSchool of Engineering Sciences in Chemistry, Biotechnology and HealthKTH Royal Institute of TechnologyStockholmSE-100 40Sweden
| | - Manishkumar R. Shimpi
- Department of Materials and Environmental ChemistryStockholm UniversityStockholmSE‐114 18Sweden
- Chemistry of InterfacesLuleå University of TechnologyLuleåSE‐971 87Sweden
| | - James Doutch
- ISIS Neutron & Muon Source, Science and Technology Facilities CouncilRutherford Appleton LaboratoryHarwell‐OxfordOX11 0QXUK
| | - Leide Cavalcanti
- ISIS Neutron & Muon Source, Science and Technology Facilities CouncilRutherford Appleton LaboratoryHarwell‐OxfordOX11 0QXUK
| | - Sergei Glavatskih
- Department of Engineering DesignKTH Royal Institute of TechnologyStockholmSE‐10044Sweden
- School of ChemistryUniversity of New South WalesSydney2052Australia
- Department of Electromechanical, Systems and Metal EngineeringGhent UniversityGhentB‐9052Belgium
| | - Oleg N. Antzutkin
- Chemistry of InterfacesLuleå University of TechnologyLuleåSE‐971 87Sweden
| | - Mark W. Rutland
- Division of Surface and Corrosion ScienceSchool of Engineering Sciences in Chemistry, Biotechnology and HealthKTH Royal Institute of TechnologyStockholmSE-100 40Sweden
- School of ChemistryUniversity of New South WalesSydney2052Australia
- Bioeconomy and Health Department Materials and Surface DesignRISE Research Institutes of SwedenStockholmSE-114 86Sweden
- Laboratoire de Tribologie et Dynamique des SystèmesÉcole Centrale de LyonLyon69130France
| | - Anja‐Verena Mudring
- Department of Materials and Environmental ChemistryStockholm UniversityStockholmSE‐114 18Sweden
- Department of Biological and Chemical Engineering and iNANOAarhus UniversityAarhus C8000Denmark
| |
Collapse
|
11
|
Heiba ZK, El-naggar A, Kamal A, Abd-Elkader OH, Mohamed MB. Extraction and studies of optoelectrical parameters of PVC/Zn0.9M0.1S (M: Co, Fe, Mn, V) films. OPTICAL MATERIALS 2023; 143:114282. [DOI: 10.1016/j.optmat.2023.114282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
12
|
Kumar Bambam A, Dhanola A, Kumar Gajrani K. A critical review on halogen-free ionic liquids as potential metalworking fluid additives. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
13
|
Zhang Y, Marlow JB, Millar W, Silvester DS, Warr GG, Li H, Atkin R. Effect of ion structure on the nanostructure and electrochemistry of surface active ionic liquids. J Colloid Interface Sci 2023; 630:931-939. [DOI: 10.1016/j.jcis.2022.10.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/29/2022] [Accepted: 10/16/2022] [Indexed: 11/05/2022]
|
14
|
Bresme F, Kornyshev AA, Perkin S, Urbakh M. Electrotunable friction with ionic liquid lubricants. NATURE MATERIALS 2022; 21:848-858. [PMID: 35761059 DOI: 10.1038/s41563-022-01273-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Room-temperature ionic liquids and their mixtures with organic solvents as lubricants open a route to control lubricity at the nanoscale via electrical polarization of the sliding surfaces. Electronanotribology is an emerging field that has a potential to realize in situ control of friction-that is, turning the friction on and off on demand. However, fulfilling its promise needs more research. Here we provide an overview of this emerging research area, from its birth to the current state, reviewing the main achievements in non-equilibrium molecular dynamics simulations and experiments using atomic force microscopes and surface force apparatus. We also present a discussion of the challenges that need to be solved for future applications of electrotunable friction.
Collapse
Affiliation(s)
- Fernando Bresme
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK.
| | - Alexei A Kornyshev
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK.
| | - Susan Perkin
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK.
| | - Michael Urbakh
- Department of Physical Chemistry, School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, and The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
15
|
Zhang Y, Marlow JB, Millar W, Aman ZM, Silvester DS, Warr GG, Atkin R, Li H. Nanostructure, electrochemistry and potential-dependent lubricity of the catanionic surface-active ionic liquid [P 6,6,6,14] [AOT]. J Colloid Interface Sci 2022; 608:2120-2130. [PMID: 34752982 DOI: 10.1016/j.jcis.2021.10.120] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 10/20/2022]
Abstract
HYPOTHESIS A catanionic surface-active ionic liquid (SAIL) trihexyltetradecylphosphonium 1,4-bis(2-ethylhexoxy)-1,4-dioxobutane-2-sulfonate ([P6,6,6,14] [AOT]) is nanostructured in the bulk and at the interface. The interfacial nanostructure and lubricity may be changed by applying a potential. EXPERIMENTS The bulk structure and viscosity have been investigated using small angle X-ray scattering (SAXS) and rheometry. The interfacial structure and lubricity as a function of potential have been investigated using atomic force microscopy (AFM). The electrochemistry has been investigated using cyclic voltammetry. FINDINGS [P6,6,6,14] [AOT] shows sponge-like bulk nanostructure with distinct interdigitation of cation-anion alkyl chains. Shear-thinning occurs at 293 K and below, but becomes less obvious on heating up to 313 K. Voltammetric analysis reveals that the electrochemical window of [P6,6,6,14] [AOT] on a gold micro disk electrode exceeds the potential range of the AFM experiments and that negligible redox activity occurs in this range. The interfacial layered structure of [P6,6,6,14] [AOT] is weaker than conventional ILs and SAILs, whereas lubricity is better, confirming the inverse correlation between the near-surface structure and lubricity. The adhesive forces of [P6,6,6,14] [AOT] are lower at -1.0 V than at open circuit potential and +1.0 V, likely due to reduced electrostatic interactions caused by shielding of charge centres via long alkyl chains.
Collapse
Affiliation(s)
- Yunxiao Zhang
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Joshua B Marlow
- School of Chemistry and Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Wade Millar
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth 6845, Western Australia, Australia
| | - Zachary M Aman
- Fluid Science and Resources Division, School of Engineering, The University of Western Australia, Perth, Western Australia, Australia
| | - Debbie S Silvester
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth 6845, Western Australia, Australia
| | - Gregory G Warr
- School of Chemistry and Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Rob Atkin
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia.
| | - Hua Li
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia; Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
16
|
Kamalakannan S, Rudharachari Maiyelvaganan K, Palanisamy K, Thomas A, Ben Said R, Prakash M, Hochlaf M. Carbon dioxide adsorption and activation on ionic liquid decorated Au(111) surface: A DFT study. CHEMOSPHERE 2022; 286:131612. [PMID: 34325262 DOI: 10.1016/j.chemosphere.2021.131612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/06/2021] [Accepted: 07/18/2021] [Indexed: 06/13/2023]
Abstract
We use first principle approaches to study the adsorption and catalytic activation mechanism of CO2 on ionic liquids (ILs, [CnMIm]+[Cl]- (n = 0-6)) attached to a Au(111) surface. The adsorption of CO2 at this liquid-solid model interface occurs via either (i) parallel π-stacking mode or (ii) CO2 oxygen lone pair (lp)···π interaction. These CO2 physisorption modes, which depend on the CO2 landing angle at this interface, are identified as an efficient way to activate CO2 and its further conversion into value-added products. For illustration, we discuss the conversion of CO2 into formic acid where the ILs@Au(111) decorated interface allows reduction of the activation energy for the CO2 + H2 → HCOOH reaction. In sum, our electrode/electrolyte based interface model provides valuable information to design novel heterogeneous catalysts for CO2 conversion. Indeed, our work establishes that a suitable interface material is enough to activate CO2.
Collapse
Affiliation(s)
- Shanmugasundaram Kamalakannan
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Chennai, TN, India
| | - K Rudharachari Maiyelvaganan
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Chennai, TN, India
| | - Kandhan Palanisamy
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Chennai, TN, India
| | - Anoopa Thomas
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Chennai, TN, India
| | - Ridha Ben Said
- Department of Chemistry, College of Science and Arts, Qassim University, Ar Rass, Saudi Arabia.
| | - Muthuramalingam Prakash
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Chennai, TN, India.
| | - Majdi Hochlaf
- Université Gustave Eiffel, COSYS/LISIS, 5 Bd Descartes, 77454, Champs sur Marne, France.
| |
Collapse
|
17
|
Munavirov B, Black JJ, Shah FU, Leckner J, Rutland MW, Harper JB, Glavatskih S. The effect of anion architecture on the lubrication chemistry of phosphonium orthoborate ionic liquids. Sci Rep 2021; 11:24021. [PMID: 34912003 PMCID: PMC8674318 DOI: 10.1038/s41598-021-02763-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/23/2021] [Indexed: 11/26/2022] Open
Abstract
Phosphonium ionic liquids with orthoborate anions have been studied in terms of their interfacial film formation, both physisorbed and sacrificial from chemical breakdown, in sheared contacts of varying harshness. The halogen-free anion architecture was varied through (i) the heteronuclear ring size, (ii) the hybridisation of the constituent atoms, and (iii) the addition of aryl functionalities. Time of Flight-Secondary Ion Mass Spectrometry analysis revealed the extent of sacrificial tribofilm formation allowing the relative stability of the ionic liquids under tribological conditions to be determined and their breakdown mechanisms to be compared to simple thermal decomposition. Overall, ionic liquids outperformed reference oils as lubricants; in some cases, sacrificial films were formed (with anion breakdown a necessary precursor to phosphonium cation decomposition) while in other cases, a protective, self-assembly lubricant layer or hybrid film was formed. The salicylate-based anion was the most chemically stable and decomposed only slightly even under the harshest conditions. It was further found that surface topography influenced the degree of breakdown through enhanced material transport and replenishment. This work thus unveils the relationship between ionic liquid composition and structure, and the ensuing inter- and intra-molecular interactions and chemical stability, and demonstrates the intrinsic tuneability of an ionic liquid lubrication technology.
Collapse
Affiliation(s)
- Bulat Munavirov
- System and Component Design, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
| | - Jeffrey J Black
- School of Chemistry, University of New South Wales, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Faiz Ullah Shah
- Chemistry of Interfaces, Luleå University of Technology, 97 187, Luleå, Sweden
| | - Johan Leckner
- Axel Christiernsson International AB, 44911, Nol, Sweden
| | - Mark W Rutland
- School of Chemistry, University of New South Wales, UNSW Sydney, Sydney, NSW, 2052, Australia.
- Division of Surface and Corrosion Science, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden.
- Surfaces, Processes and Formulation, RISE Research Institutes of Sweden, 100 44, Stockholm, Sweden.
| | - Jason B Harper
- School of Chemistry, University of New South Wales, UNSW Sydney, Sydney, NSW, 2052, Australia.
| | - Sergei Glavatskih
- System and Component Design, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden.
- School of Chemistry, University of New South Wales, UNSW Sydney, Sydney, NSW, 2052, Australia.
- Department of Electromechanical, Systems and Metal Engineering, Ghent University, 9052, Ghent, Belgium.
| |
Collapse
|
18
|
Nishi N, Uchiyashiki J, Oda T, Hino M, Yamada NL. Overscreening Induced by Ionic Adsorption at the Ionic Liquid/Electrode Interface Detected Using Neutron Reflectometry with a Rational Material Design. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Naoya Nishi
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510
| | - Junya Uchiyashiki
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510
| | - Tatsuro Oda
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581
| | - Masahiro Hino
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Osaka 590-0494
| | - Norifumi L. Yamada
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801
| |
Collapse
|
19
|
Toda S, Clark R, Welton T, Shigeto S. Observation of the Pockels Effect in Ionic Liquids and Insights into the Length Scale of Potential-Induced Ordering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5193-5201. [PMID: 33886322 DOI: 10.1021/acs.langmuir.1c00130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ionic liquids (ILs) under electric fields play essential roles in the electrochemical utilization of ILs. Recently, long-range organization of ILs in the vicinity of charged (and even neutral) surfaces has been revealed, but experimental evidence for such an ordering is still limited and its spatial length scale remains controversial. Here, we use confocal Raman microspectroscopy to investigate the effect of an applied electric potential on the IL 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and its analogues in a space-resolved manner. Much to our surprise, the observed Raman difference spectra of the ILs obtained with and without an applied potential exhibit uniform intensity changes independent of vibrational modes of cations and anions, a finding in sharp contrast with the electric field effects on molecular liquids that we have previously observed. We interpret this unexpected finding in terms of the Pockels effect that occurs as a result of a potential-induced ordering of the IL near an IL-electrode interface. The refractive index changes due to the applied potential are estimated using the experimental Raman intensity changes. The results allow us to deduce that the length scale of the ordering in the ILs is tens to hundreds of nanometers, extending more than would be expected for the electrical double layer but not as far as a micrometer scale.
Collapse
Affiliation(s)
- Shogo Toda
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda 669-1337, Japan
| | - Ryan Clark
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
| | - Tom Welton
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
| | - Shinsuke Shigeto
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda 669-1337, Japan
| |
Collapse
|
20
|
Morris DC, Prescott SW, Harper JB. Rapid relaxation NMR measurements to predict rate coefficients in ionic liquid mixtures. An examination of reaction outcome changes in a homologous series of ionic liquids. Phys Chem Chem Phys 2021; 23:9878-9888. [PMID: 33908419 DOI: 10.1039/d0cp06066f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of ionic liquids based on the 1-alkyl-3-methylimidazolium cations were examined as components of the solvent mixture for a bimolecular substitution process. The effects on both the rate coefficient of the process and the NMR spin-spin relaxation of the solvent components of changing either the alkyl chain length or the amount of ionic liquid in the reaction mixture were determined. At a constant mole fraction, a shorter alkyl chain length resulted in a greater rate coefficient enhancement and a longer relaxation time, with the opposite effects for a longer alkyl chain length. For a given ionic liquid, increasing the proportion of salt in the reaction mixture resulted in a greater rate coefficient and a shorter relaxation time. The microscopic origins of the rate coefficient enhancement were determined and a step change found in the activation parameters on increasing the alkyl chain length from hexyl to octyl, suggesting notable structuring in solution. Across a range of ionic liquids and solvent compositions, the relaxation time from NMR measurements was shown to relate to the reaction rate coefficient. The approach of using fast and simple NMR relaxation measurements to predict reaction outcomes was exemplified using a morpholinium-based ionic liquid.
Collapse
Affiliation(s)
- Daniel C Morris
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | | | | |
Collapse
|
21
|
Grecchi S, Ferdeghini C, Longhi M, Mezzetta A, Guazzelli L, Khawthong S, Arduini F, Chiappe C, Iuliano A, Mussini PR. Chiral Biobased Ionic Liquids with Cations or Anions including Bile Acid Building Blocks as Chiral Selectors in Voltammetry. ChemElectroChem 2021. [DOI: 10.1002/celc.202100200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sara Grecchi
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 20133 Milan Italy
| | - Claudio Ferdeghini
- Dipartimento di Farmacia Università degli Studi di Pisa Via Bonanno 33 56126 Pisa Italy
| | - Mariangela Longhi
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 20133 Milan Italy
| | - Andrea Mezzetta
- Dipartimento di Farmacia Università degli Studi di Pisa Via Bonanno 33 56126 Pisa Italy
| | - Lorenzo Guazzelli
- Dipartimento di Farmacia Università degli Studi di Pisa Via Bonanno 33 56126 Pisa Italy
| | - Siriwat Khawthong
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 20133 Milan Italy
| | - Fabiana Arduini
- Dipartimento di Scienze e Tecnologie Chimiche Università di Roma Tor Vergata Via della Ricerca Scientifica 1 00133 Rome Italy
| | - Cinzia Chiappe
- Dipartimento di Farmacia Università degli Studi di Pisa Via Bonanno 33 56126 Pisa Italy
| | - Anna Iuliano
- Dipartimento di Chimica e Chimica Industriale Università degli Studi di Pisa Via G. Moruzzi 13 56124 Pisa Italy
| | | |
Collapse
|
22
|
Voegtle MJ, Pal T, Pennathur AK, Menachekanian S, Patrow JG, Sarkar S, Cui Q, Dawlaty JM. Interfacial Polarization and Ionic Structure at the Ionic Liquid-Metal Interface Studied by Vibrational Spectroscopy and Molecular Dynamics Simulations. J Phys Chem B 2021; 125:2741-2753. [PMID: 33689335 DOI: 10.1021/acs.jpcb.0c11232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ionic liquids (ILs) have both fundamental and practical value in interfacial science and electrochemistry. However, understanding their behavior near a surface is challenging because of strong Coulomb interactions and large and irregular ionic sizes, which affect both their structure and energetics. To understand this problem, we present a combined experimental and computational study using a vibrational probe molecule, 4-mercaptobenzonitrile, inserted at the junction between a metal and a variety of ILs. The vibrational frequency of the nitrile in the probe molecule reports on the local solvation environment and the electrostatic field at this junction. Within the ethylmethyl imidazolium (EMIM+) cation family of ILs, we varied the anions over a range of sizes and types. Complementing our surface spectroscopy, we also ran molecular dynamics simulations of these interfaces to better understand the ionic structures that produced the measured fields. The magnitude of the frequency shifts, and thereby fields, shows a general correlation with the size of anions, with larger anions corresponding to smaller fields. We find that the source of this correlation is partial intercalation of smaller anions into the probe monolayer, resulting in tighter packing of ionic layers near the surface. Larger anions reduce the overall lateral ion packing density near the surface, which reduces the net charge per unit area and explains the smaller observed fields. The insight from this work is important for developing a fundamental picture of concentrated electrolytes near interfaces and can help with designing ILs to create tailored electric fields near an electrode.
Collapse
Affiliation(s)
- Matthew J Voegtle
- Department of Chemistry, University of Southern California, Los Angeles, California 90007, United States
| | - Tanmoy Pal
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Anuj K Pennathur
- Department of Chemistry, University of Southern California, Los Angeles, California 90007, United States
| | - Sevan Menachekanian
- Department of Chemistry, University of Southern California, Los Angeles, California 90007, United States
| | - Joel G Patrow
- Department of Chemistry, University of Southern California, Los Angeles, California 90007, United States
| | - Sohini Sarkar
- Department of Chemistry, University of Southern California, Los Angeles, California 90007, United States
| | - Qiang Cui
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Jahan M Dawlaty
- Department of Chemistry, University of Southern California, Los Angeles, California 90007, United States
| |
Collapse
|
23
|
Pilkington GA, Welbourn R, Oleshkevych A, Watanabe S, Pedraz P, Radiom M, Glavatskih S, Rutland MW. Effect of water on the electroresponsive structuring and friction in dilute and concentrated ionic liquid lubricant mixtures. Phys Chem Chem Phys 2020; 22:28191-28201. [PMID: 33295339 DOI: 10.1039/d0cp05110a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of water on the electroactive structuring of a tribologically relevant ionic liquid (IL) when dispersed in a polar solvent has been investigated at a gold electrode interface using neutron reflectivity (NR). For all solutions studied, the addition of small amounts of water led to clear changes in electroactive structuring of the IL at the electrode interface, which was largely determined by the bulk IL concentration. At a dilute IL concentration, the presence of water gave rise to a swollen interfacial structuring, which exhibited a greater degree of electroresponsivity with applied potential compared to an equivalent dry solution. Conversely, for a concentrated IL solution, the presence of water led to an overall thinning of the interfacial region and a crowding-like structuring, within which the composition of the inner layer IL layers varied systematically with applied potential. Complementary nanotribotronic atomic force microscopy (AFM) measurements performed for the same IL concentration, in dry and ambient conditions, show that the presence of water reduces the lubricity of the IL boundary layers. However, consistent with the observed changes in the IL layers observed by NR, reversible and systematic control of the friction coefficient with applied potential was still achievable. Combined, these measurements provide valuable insight into the implications of water on the interfacial properties of ILs at electrified interfaces, which inevitably will determine their applicability in tribotronic and electrochemical contexts.
Collapse
Affiliation(s)
- Georgia A Pilkington
- Division of Surface and Corrosion Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Pilkington GA, Oleshkevych A, Pedraz P, Watanabe S, Radiom M, Reddy AB, Vorobiev A, Glavatskih S, Rutland MW. Electroresponsive structuring and friction of a non-halogenated ionic liquid in a polar solvent: effect of concentration. Phys Chem Chem Phys 2020; 22:19162-19171. [PMID: 32812565 DOI: 10.1039/d0cp02736g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neutron reflectivity (NR) measurements have been employed to study the interfacial structuring and composition of electroresponsive boundary layers formed by an ionic liquid (IL) lubricant at an electrified gold interface when dispersed in a polar solvent. The results reveal that both the composition and extent of the IL boundary layers intricately depend on the bulk IL concentration and the applied surface potential. At the lowest concentration (5% w/w), a preferential adsorption of the IL cation at the gold electrode is observed, which hinders the ability to electro-induce changes in the boundary layers. In contrast, at higher IL bulk concentrations (10 and 20% w/w), the NR results reveal a significantly larger concentration of the IL ions at the gold interface that exhibit significantly greater electroresponsivity, with clear changes in the layer composition and layer thickness observed for different potentials. In complementary atomic force microscopy (AFM) measurements on an electrified gold surface, such IL boundary layers are demonstrated to provide excellent friction reduction and electroactive friction (known as tribotronics). In agreement with the NR results obtained, clear concentration effects are also observed. Together such results provide valuable molecular insight into the electroactive structuring of ILs in solvent mixtures, as well as provide mechanistic understanding of their tribotronic behaviours.
Collapse
Affiliation(s)
- Georgia A Pilkington
- Division of Surface and Corrosion Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| | - Anna Oleshkevych
- Division of Surface and Corrosion Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| | - Patricia Pedraz
- Division of Surface and Corrosion Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| | - Seiya Watanabe
- Division of Surface and Corrosion Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| | - Milad Radiom
- Division of Surface and Corrosion Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| | - Akepati Bhaskar Reddy
- System and Component Design, Department of Machine Design, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Alexei Vorobiev
- Department of Physics and Astronomy, Division of Materials Physics, Uppsala University, Uppsala, Sweden
| | - Sergei Glavatskih
- System and Component Design, Department of Machine Design, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden and Department of Electromechanical, Systems and Metal Engineering, Ghent University, B-9052 Ghent, Belgium
| | - Mark W Rutland
- Division of Surface and Corrosion Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden. and Surfaces, Processes and Formulation, RISE Research Institutes of Sweden, SE-100 44 Stockholm, Sweden
| |
Collapse
|