1
|
Bhattacharjee R, Kertesz M. Topological Transition in Aromatic and Quinonoid π-Conjugated Polymers Induced by Static Strain. J Am Chem Soc 2024; 146:26497-26504. [PMID: 39270301 PMCID: PMC11440520 DOI: 10.1021/jacs.4c10064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
A topological quantum phase transition has been identified for the first time for 24 π-conjugated polymers as a function of external longitudinal strain due to a level crossing of the frontier orbitals at the topological phase transition. Topological phase is determined by the presence/absence of edge states. Out of the 24 polymers 15 are traditionally assigned an aromatic character, and 9 are traditionally assigned a quinonoid character. We find that all aromatic ones correspond to the trivial topological phase (Zak invariant, Z2 = 0), while all of the quinonoid ones to the nontrivial topological phase (Z2 = 1) replacing the intuitive characterization of aromatic/quinonoid with the physically well-defined Zak invariant. Unique topological phase transition as a function of tensile strain can be achieved for four of the quinonoid ones. Tensile strain in these cases leads to a reduction of the bandgap. We introduced a figure of merit for indicating the efficiency of achievable very small bandgap upon the application of external strain.
Collapse
Affiliation(s)
- Rameswar Bhattacharjee
- Department of Chemistry, Georgetown University, Washington, District of Columbia 20057, United States
| | - Miklos Kertesz
- Department of Chemistry, Georgetown University, Washington, District of Columbia 20057, United States
| |
Collapse
|
2
|
Li M, Li Z, Yu D, Wang M, Wang D, Wang B. Quinoid Conjugated Polymer Nanoparticles with NIR-II Absorption Peak Toward Efficient Photothermal Therapy. Chemistry 2023; 29:e202202930. [PMID: 36484147 DOI: 10.1002/chem.202202930] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/21/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Recently, extensive efforts have been devoted to the development of the second near-infrared bio-window (NIR-II, 1000-1700 nm) theranostic agents owing to the excellent tissue-penetration capability of NIR-II light. The exploration of organic NIR-II photothermal therapy materials, especially those with absorption peak over 1000 nm, is an appealing yet significantly challenging task. Herein, we have designed conjugated polymer nanoparticles (PIS NPs) with NIR-II absorption peak at 1026 nm through a combined strategy of introducing quinoid donor-acceptor (D-A) structures, constructing intramolecular "conformational locks" and extending the conjugation area to narrow the band gap. Irradiated at 1064 nm, PIS NPs showed remarkable photothermal conversion performance for efficient photothermal ablation of tumor cells in vitro and in vivo. This study provides useful insights into the rational design of organic NIR-II photothermal agents based on multiple strategies.
Collapse
Affiliation(s)
- Meng Li
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
| | - Zheng Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Danni Yu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
| | - Ming Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Bing Wang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
| |
Collapse
|
3
|
Comí M, Moncho S, Attar S, Barłóg M, Brothers E, Bazzi HS, Al-Hashimi M. Structural-Functional Properties of Asymmetric Fluoro-Alkoxy Substituted Benzothiadiazole Homopolymers with Flanked Chalcogen-Based Heterocycles. Macromol Rapid Commun 2023; 44:e2200731. [PMID: 36285613 DOI: 10.1002/marc.202200731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/06/2022] [Indexed: 11/08/2022]
Abstract
The synthesis and characterization of asymmetric alkoxy- are reported, fluoro-benzothiadiazole (BT) acceptor core derivatized with a series of six different heterocycles (selenophene, thiophene, furan, 5-thiazole, 2-thiazole and 2-oxazole). The effect of the flanked-heterocycles containing different chalcogen atoms of the six homopolymers (HPX) is studied using optical, thermal, electrochemical, and computational analysis. Computational calculations indicate a strong relationship between the most stable conformation for each homopolymer and their bearing heterocycle, thus homopolymers HPSe', HPTp', HPFu', and HPTzC5, adopted the syn-syn and syn-anti conformations due to their noncovalent interactions with shorter distances, while HPTzC2' and HPOx' demonstrate preference for the anti-anti conformation. Optical property studies of the homopolymers reveal a strong red-shift in solution and film upon exchanging the chalcogen atom from Oxygen < Sulfur < Selenium in HPFu, HPTp, and HPSe, respectively. In addition, deeper highest occupied molecular orbital (HOMO) energy levels are observed when the donor-acceptor moieties (HPSe, HPTp, and HPFu) are substituted for the acceptor-acceptor systems such as HPTzC5, HPTzC2, and HPOx. Improved packing and morphology are exhibited for the donor-acceptor homopolymers. Thus, having a flanked heterocycle containing different chalcogen-atoms in polymeric systems is one way of tuning the physicochemical properties of conjugated materials for optoelectronic applications.
Collapse
Affiliation(s)
- Marc Comí
- Department of Chemistry, Texas A&M University at Qatar, Education City, Doha, P.O. Box 23874, Qatar
| | - Salvador Moncho
- Department of Chemistry, Texas A&M University at Qatar, Education City, Doha, P.O. Box 23874, Qatar
| | - Salahuddin Attar
- Department of Chemistry, Texas A&M University at Qatar, Education City, Doha, P.O. Box 23874, Qatar
| | - Maciej Barłóg
- Department of Chemistry, Texas A&M University at Qatar, Education City, Doha, P.O. Box 23874, Qatar
| | - Edward Brothers
- Department of Chemistry, Texas A&M University at Qatar, Education City, Doha, P.O. Box 23874, Qatar
| | - Hassan S Bazzi
- Department of Chemistry, Texas A&M University at Qatar, Education City, Doha, P.O. Box 23874, Qatar.,Department of Materials Science & Engineering, Texas A&M University, 209 Reed MacDonald Building, College Station, TX, 77843-3003, USA
| | - Mohammed Al-Hashimi
- Department of Chemistry, Texas A&M University at Qatar, Education City, Doha, P.O. Box 23874, Qatar
| |
Collapse
|
4
|
de Oteyza DG, Frederiksen T. Carbon-based nanostructures as a versatile platform for tunable π-magnetism. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:443001. [PMID: 35977474 DOI: 10.1088/1361-648x/ac8a7f] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Emergence ofπ-magnetism in open-shell nanographenes has been theoretically predicted decades ago but their experimental characterization was elusive due to the strong chemical reactivity that makes their synthesis and stabilization difficult. In recent years, on-surface synthesis under vacuum conditions has provided unprecedented opportunities for atomically precise engineering of nanographenes, which in combination with scanning probe techniques have led to a substantial progress in our capabilities to realize localized electron spin states and to control electron spin interactions at the atomic scale. Here we review the essential concepts and the remarkable advances in the last few years, and outline the versatility of carbon-basedπ-magnetic materials as an interesting platform for applications in spintronics and quantum technologies.
Collapse
Affiliation(s)
- Dimas G de Oteyza
- Nanomaterials and Nanotechnology Research Center (CINN), CSIC-UNIOVI-PA, E-33940 El Entrego, Spain
- Donostia International Physics Center (DIPC)-UPV/EHU, E-20018 San Sebastián, Spain
| | - Thomas Frederiksen
- Donostia International Physics Center (DIPC)-UPV/EHU, E-20018 San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, E-48013 Bilbao, Spain
| |
Collapse
|
5
|
Dhiman A, Giribabu L, Trivedi R. π-Conjugated Materials Derived From Boron-Chalcogenophene Combination. A Brief Description of Synthetic Routes and Optoelectronic Applications. CHEM REC 2021; 21:1738-1770. [PMID: 33844422 DOI: 10.1002/tcr.202100039] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/19/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022]
Abstract
Functional materials composed of Boron-chalcogenophene conjugates have emerged as promising ensemble featuring commendable optoelectronic properties. This review describes the categories, synthetic routes and optoelectronic applications of a range of boron-chalcogenophene conjugates. Conjugation and linking of different types of tri- and tetra-coordinated boron moieties with chalcogenophenes have remained an important strategy for constructing a range of functional materials. Synthetic protocols have been devised to efficiently prepare such chemically robust conjugates, often exhibiting a myriad of photophysical properties, redox capabilities and also solid-state behaviors. Tin-boron and silicon-boron exchange protocols have been efficiently adapted to access these boron-chalcogenophenes. Few other commonly used methods namely, hydroboration of alkynes as well as electrophilic borylations are also mentioned. The chemical and electronic properties of such boron-chalcogenophene conjugates are directly influenced by the strong Lewis acid character of trivalent boranes which can further alter the intra- and inter- molecular Lewis acid-base interactions. Apart from the synthetic protocols, recent advances in the application of these boron-chalcogenophene conjugates towards analyte sensing, organic electronics, molecular switches and several other aspects will be discussed in this review.
Collapse
Affiliation(s)
- Ankita Dhiman
- Catalysis and Fine Chemicals Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, Uppal Road, Tarnaka, Hyderabad,, 500007, Telangana, India
| | - Lingamallu Giribabu
- Polymers and Functional Materials Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, Uppal Road, Tarnaka, Hyderabad, 500007, Telangana, India.,Professor (AcSIR), Academy of Scientific and Innovative Research, AcSIR Headquarters, CSIR-HRDC campus Sector 19, Kamala Nehru Nagar, Ghaziabad, U.P., 201 002, India
| | - Rajiv Trivedi
- Catalysis and Fine Chemicals Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, Uppal Road, Tarnaka, Hyderabad,, 500007, Telangana, India.,Professor (AcSIR), Academy of Scientific and Innovative Research, AcSIR Headquarters, CSIR-HRDC campus Sector 19, Kamala Nehru Nagar, Ghaziabad, U.P., 201 002, India
| |
Collapse
|