1
|
Tang M, Xia Y, Yang D, Lu S, Zhu X, Tang R, Zhang W. Ag Decoration and SnO 2 Coupling Modified Anatase/Rutile Mixed Crystal TiO 2 Composite Photocatalyst for Enhancement of Photocatalytic Degradation towards Tetracycline Hydrochloride. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:873. [PMID: 35269361 PMCID: PMC8912704 DOI: 10.3390/nano12050873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023]
Abstract
The anatase/rutile mixed crystal TiO2 was prepared and modified with Ag decoration and SnO2 coupling to construct a Ag@SnO2/anatase/rutile composite photocatalytic material. The crystal structure, morphology, element valence, optical properties and surface area were characterized, and the effects of Ag decoration and SnO2 coupling on the structure and photocatalytic properties of TiO2 were studied. Ag decoration and SnO2 coupling are beneficial to reduce the recombination of photogenerated electrons and holes. When the two modification are combined, a synergistic effect is produced in suppressing the photogenerated charge recombination, making Ag@SnO2/TiO2 exhibits the highest quantum utilization. After 30 min of illumination, the degradation degree of tetracycline hydrochloride (TC) by pure TiO2 increased from 63.3% to 83.1% with Ag@SnO2/TiO2.
Collapse
Affiliation(s)
- Mao Tang
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (M.T.); (Y.X.); (D.Y.); (S.L.)
- Sichuan Province Engineering Technology Research Center of Powder Metallurgy, Chengdu 610106, China
| | - Yangwen Xia
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (M.T.); (Y.X.); (D.Y.); (S.L.)
| | - Daixiong Yang
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (M.T.); (Y.X.); (D.Y.); (S.L.)
| | - Shiji Lu
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (M.T.); (Y.X.); (D.Y.); (S.L.)
| | - Xiaodong Zhu
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (M.T.); (Y.X.); (D.Y.); (S.L.)
- Sichuan Province Engineering Technology Research Center of Powder Metallurgy, Chengdu 610106, China
| | - Renyong Tang
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China;
| | - Wanming Zhang
- School of Resources and Environment, Xichang University, Xichang 615000, China
| |
Collapse
|
2
|
Morsin M, Nafisah S, Sanudin R, Razali NL, Mahmud F, Soon CF. The role of positively charge poly-L-lysine in the formation of high yield gold nanoplates on the surface for plasmonic sensing application. PLoS One 2021; 16:e0259730. [PMID: 34748606 PMCID: PMC8575294 DOI: 10.1371/journal.pone.0259730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/25/2021] [Indexed: 11/18/2022] Open
Abstract
An anisotropic structure, gold (Au) nanoplates was synthesized using a two-step wet chemical seed mediated growth method (SMGM) directly on the substrate surface. Prior to the synthesis process, poly-l-lysine (PLL) as a cation polymer was used to enhance the yield of grown Au nanoplates. The electrostatic interaction of positive charged by PLL with negative charges from citrate-capped gold nanoseeds contributes to the yield increment. The percentage of PLL was varied from 0% to 10% to study the morphology of Au nanoplates in term of shape, size and surface density. 5% PLL with single layer treatment produce a variety of plate shapes such as hexagonal, flat rod and triangular obtained over the whole substrate surface with the estimated maximum yield up to ca. 48%. The high yield of Au nanoplates exhibit dual plasmonic peaks response that are associated with transverse and longitudinal localized surface plasmon resonance (TSPR and LSPR). Then, the PLL treatment process was repeated twice resulting the increment of Au nanoplates products to ca. 60%. The thin film Au nanoplates was further used as sensing materials in plasmonic sensor for detection of boric acid. The anisotropic Au nanoplates have four sensing parameters being monitored when the medium changes, which are peak position (wavelength shift), intensity of TSPR and LSPR, and the changes on sensing responses. The sensor responses are based on the interaction of light with dielectric properties from surrounding medium. The resonance effect produces by a collection of electron vibration on the Au nanoparticles surface after hit by light are captured as the responses. As a conclusion, it was found that the PLL treatment is capable to promote high yield of Au nanoplates. Moreover, the high yield of the Au nanoplates is an indication as excellent candidate for sensing material in plasmonic sensor.
Collapse
Affiliation(s)
- Marlia Morsin
- Microelectronics & Nanotechnology—Shamsuddin Research Centre (MiNT-SRC), Institute of Integrated Engineering (IIE), Universiti Tun Hussein Onn Malaysia, Parit Raja, Batu Pahat Johor, Malaysia
- Faculty of Electronic and Electrical Engineering (FKEE), Universiti Tun Hussein Onn Malaysia, Parit Raja, Batu Pahat Johor, Malaysia
| | - Suratun Nafisah
- Department of Electrical Engineering, Institut Teknologi Sumatera (ITERA), Lampung Selatan, Indonesia
| | - Rahmat Sanudin
- Microelectronics & Nanotechnology—Shamsuddin Research Centre (MiNT-SRC), Institute of Integrated Engineering (IIE), Universiti Tun Hussein Onn Malaysia, Parit Raja, Batu Pahat Johor, Malaysia
- Faculty of Electronic and Electrical Engineering (FKEE), Universiti Tun Hussein Onn Malaysia, Parit Raja, Batu Pahat Johor, Malaysia
| | - Nur Liyana Razali
- Microelectronics & Nanotechnology—Shamsuddin Research Centre (MiNT-SRC), Institute of Integrated Engineering (IIE), Universiti Tun Hussein Onn Malaysia, Parit Raja, Batu Pahat Johor, Malaysia
- Faculty of Electronic and Electrical Engineering (FKEE), Universiti Tun Hussein Onn Malaysia, Parit Raja, Batu Pahat Johor, Malaysia
| | - Farhanahani Mahmud
- Microelectronics & Nanotechnology—Shamsuddin Research Centre (MiNT-SRC), Institute of Integrated Engineering (IIE), Universiti Tun Hussein Onn Malaysia, Parit Raja, Batu Pahat Johor, Malaysia
- Faculty of Electronic and Electrical Engineering (FKEE), Universiti Tun Hussein Onn Malaysia, Parit Raja, Batu Pahat Johor, Malaysia
| | - Chin Fhong Soon
- Microelectronics & Nanotechnology—Shamsuddin Research Centre (MiNT-SRC), Institute of Integrated Engineering (IIE), Universiti Tun Hussein Onn Malaysia, Parit Raja, Batu Pahat Johor, Malaysia
- Faculty of Electronic and Electrical Engineering (FKEE), Universiti Tun Hussein Onn Malaysia, Parit Raja, Batu Pahat Johor, Malaysia
| |
Collapse
|