1
|
Ibele LM, Sangiogo Gil E, Villaseco Arribas E, Agostini F. Simulations of photoinduced processes with the exact factorization: state of the art and perspectives. Phys Chem Chem Phys 2024; 26:26693-26718. [PMID: 39417703 DOI: 10.1039/d4cp02489c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
This perspective offers an overview of the applications of the exact factorization of the electron-nuclear wavefunction to the domain of theoretical photochemistry, where the aim is to gain insights into the ultrafast dynamics of molecular systems via simulations of their excited-state dynamics beyond the Born-Oppenheimer approximation. The exact factorization offers an alternative viewpoint to the Born-Huang representation for the interpretation of dynamical processes involving the electronic ground and excited states as well as their coupling through the nuclear motion. Therefore, the formalism has been used to derive algorithms for quantum molecular-dynamics simulations where the nuclear motion is treated using trajectories and the electrons are treated quantum mechanically. These algorithms have the characteristic features of being based on coupled and on auxiliary trajectories, and have shown excellent performance in describing a variety of excited-state processes, as this perspective illustrates. We conclude with a discussion on the authors' point of view on the future of the exact factorization.
Collapse
Affiliation(s)
- Lea Maria Ibele
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay, 91405, France.
| | - Eduarda Sangiogo Gil
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay, 91405, France.
- Institute of Theoretical Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Evaristo Villaseco Arribas
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay, 91405, France.
- Department of Physics, Rutgers University, Newark 07102, New Jersey, USA
| | - Federica Agostini
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay, 91405, France.
| |
Collapse
|
2
|
S Mattos R, Mukherjee S, Barbatti M. Quantum Dynamics from Classical Trajectories. J Chem Theory Comput 2024. [PMID: 39235064 DOI: 10.1021/acs.jctc.4c00783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Nonadiabatic molecular dynamics plays an essential role in exploring the time evolution of molecular systems. Various methods have been developed for this study, with varying accuracy and computational cost. One very successful among them is trajectory surface hopping, which propagates nuclei as classical trajectories using forces from a quantum description of the electrons and incorporates nonadiabatic effects through stochastic state changes during each trajectory propagation. A statistical analysis of an ensemble of the independent trajectories recovers the simulated system's behavior. This approach can give good results, but it is known to overlook nuclear quantum effects, leading to inaccurate predictions. Here, we present quantum dynamics from classical trajectories (QDCT), a new protocol to recover the quantum wavepacket from the classical trajectories generated by surface hopping. In this first QDCT implementation, we apply it to recover results at the multiple spawning level from postprocessing surface hopping precomputed trajectories. With a series of examples, we demonstrate QDCT's potential to improve the accuracy of the dynamics, correct decoherence effects, and diagnose problems or increase confidence in surface hopping results. All that comes at virtually no computational cost since no new electronic calculation is required.
Collapse
Affiliation(s)
- Rafael S Mattos
- Aix Marseille University, CNRS, ICR, 13397 Marseille, France
| | - Saikat Mukherjee
- Aix Marseille University, CNRS, ICR, 13397 Marseille, France
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, 87100 Torun, Poland
| | - Mario Barbatti
- Aix Marseille University, CNRS, ICR, 13397 Marseille, France
- Institut Universitaire de France, 75231 Paris, France
| |
Collapse
|
3
|
Ibele LM, Memhood A, Levine BG, Avagliano D. Ab Initio Multiple Spawning Nonadiabatic Dynamics with Different CASPT2 Flavors: A Fully Open-Source PySpawn/OpenMolcas Interface. J Chem Theory Comput 2024. [PMID: 39228232 DOI: 10.1021/acs.jctc.4c00855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
We introduce an interface between PySpawn, a simulation package to run ab initio multiple spawning (AIMS) nonadiabatic dynamics, and OpenMolcas, a software package to perform multiconfigurational perturbations theory (CASPT2) electronic structure calculations. Our interface allows us to exploit all the functionalities of the two codes: the modular and efficient Python implementation of the AIMS algorithm and the extensive analysis tools offered by PySpawn, with the cutting-edge implementation of CASPT2 equations in OpenMolcas, including the recently introduced analytical gradients and different flavors. Both are fully open-source and free of charge, making the following implementation unique in the current plethora of software for nonadiabatic dynamics. This represents an important step toward a wider application of AIMS-based nonadiabatic dynamics combined with high-accuracy excited-state calculations. The importance and the need for such an implementation are demonstrated by application to the ultrafast relaxation of fulvene from S1 to S0, which is drastically affected by the potential energy surface on which the nuclear wavepacket is propagated. Additionally, the decay is influenced by the CASPT2 flavor adopted, posing interesting questions in the choice of one over the other and opening the door to deeper studies on the effect of CASPT2 formulations in nonadiabatic dynamics.
Collapse
Affiliation(s)
- Lea M Ibele
- CNRS, Institut de Chimie Physique UMR8000, Université Paris-Saclay, 91405 Orsay, France
| | - Arshad Memhood
- Department of Chemistry, Institute for Advanced Computational Science, Stony Brook, New York 11794, United States
| | - Benjamin G Levine
- Department of Chemistry, Institute for Advanced Computational Science, Stony Brook, New York 11794, United States
| | - Davide Avagliano
- Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences (iCLeHS UMR 8060), PSL University, 75005 Paris, France
| |
Collapse
|
4
|
Myers CA, Miyazaki K, Trepl T, Isborn CM, Ananth N. GPU-accelerated on-the-fly nonadiabatic semiclassical dynamics. J Chem Phys 2024; 161:084114. [PMID: 39193942 DOI: 10.1063/5.0223628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/11/2024] [Indexed: 08/29/2024] Open
Abstract
GPU-accelerated on-the-fly nonadiabatic dynamics is enabled by interfacing the linearized semiclassical dynamics approach with the TeraChem electronic structure program. We describe the computational workflow of the "PySCES" code interface, a Python code for semiclassical dynamics with on-the-fly electronic structure, including parallelization over multiple GPU nodes. We showcase the abilities of this code and present timings for two benchmark systems: fulvene solvated in acetonitrile and a charge transfer system in which a photoexcited zinc-phthalocyanine donor transfers charge to a fullerene acceptor through multiple electronic states on an ultrafast timescale. Our implementation paves the way for an efficient semiclassical approach to model the nonadiabatic excited state dynamics of complex molecules, materials, and condensed phase systems.
Collapse
Affiliation(s)
- Christopher A Myers
- Department of Chemistry and Biochemistry, University of California Merced, Merced, California 95343, USA
| | - Ken Miyazaki
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Thomas Trepl
- Theoretical Physics IV, University of Bayreuth, 95440 Bayreuth, Germany
| | - Christine M Isborn
- Department of Chemistry and Biochemistry, University of California Merced, Merced, California 95343, USA
| | - Nandini Ananth
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
5
|
Mannouch JR, Kelly A. Quantum Quality with Classical Cost: Ab Initio Nonadiabatic Dynamics Simulations Using the Mapping Approach to Surface Hopping. J Phys Chem Lett 2024; 15:5814-5823. [PMID: 38781480 PMCID: PMC11163471 DOI: 10.1021/acs.jpclett.4c00535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Nonadiabatic dynamics methods are an essential tool for investigating photochemical processes. In the context of employing first-principles electronic structure techniques, such simulations can be carried out in a practical manner using semiclassical trajectory-based methods or wave packet approaches. While all approaches applicable to first-principles simulations are necessarily approximate, it is commonly thought that wave packet approaches offer inherent advantages over their semiclassical counterparts in terms of accuracy and that this trait simply comes at a higher computational cost. Here we demonstrate that the mapping approach to surface hopping (MASH), a recently introduced trajectory-based nonadiabatic dynamics method, can be efficiently applied in tandem with ab initio electronic structure. Our results even suggest that MASH may provide more accurate results than on-the-fly wave packet techniques, all at a much lower computational cost.
Collapse
Affiliation(s)
- Jonathan R. Mannouch
- Hamburg Center for Ultrafast
Imaging, Universität Hamburg and
the Max Planck Institute
for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Aaron Kelly
- Hamburg Center for Ultrafast
Imaging, Universität Hamburg and
the Max Planck Institute
for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
6
|
Araujo L, Lasser C, Schmidt B. FSSH-2: Fewest Switches Surface Hopping with Robust Switching Probability. J Chem Theory Comput 2024; 20:3413-3419. [PMID: 38696709 DOI: 10.1021/acs.jctc.4c00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
This study introduces the FSSH-2 scheme, a redefined and numerically stable adiabatic Fewest Switches Surface Hopping (FSSH) method for mixed quantum-classical dynamics. It reformulates the standard FSSH hopping probability without using nonadiabatic coupling vectors and allows for numerical time integration with larger step sizes. The advantages of FSSH-2 are demonstrated by numerical experiments for five different model systems in one and two spatial dimensions with up to three electronic states.
Collapse
Affiliation(s)
- Leonardo Araujo
- Department of Mathematics, TUM School of Computation, Information and Technology, Technische Universität München, Boltzmannstr. 3, 85748 Garching bei München, Germany
| | - Caroline Lasser
- Department of Mathematics, TUM School of Computation, Information and Technology, Technische Universität München, Boltzmannstr. 3, 85748 Garching bei München, Germany
| | - Burkhard Schmidt
- Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, 10117 Berlin, Germany
| |
Collapse
|
7
|
Suchan J, Liang F, Durden AS, Levine BG. Prediction challenge: First principles simulation of the ultrafast electron diffraction spectrum of cyclobutanone. J Chem Phys 2024; 160:134310. [PMID: 38573851 DOI: 10.1063/5.0198333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024] Open
Abstract
Computer simulation has long been an essential partner of ultrafast experiments, allowing the assignment of microscopic mechanistic detail to low-dimensional spectroscopic data. However, the ability of theory to make a priori predictions of ultrafast experimental results is relatively untested. Herein, as a part of a community challenge, we attempt to predict the signal of an upcoming ultrafast photochemical experiment using state-of-the-art theory in the context of preexisting experimental data. Specifically, we employ ab initio Ehrenfest with collapse to a block mixed quantum-classical simulations to describe the real-time evolution of the electrons and nuclei of cyclobutanone following excitation to the 3s Rydberg state. The gas-phase ultrafast electron diffraction (GUED) signal is simulated for direct comparison to an upcoming experiment at the Stanford Linear Accelerator Laboratory. Following initial ring-opening, dissociation via two distinct channels is observed: the C3 dissociation channel, producing cyclopropane and CO, and the C2 channel, producing CH2CO and C2H4. Direct calculations of the GUED signal indicate how the ring-opened intermediate, the C2 products, and the C3 products can be discriminated in the GUED signal. We also report an a priori analysis of anticipated errors in our predictions: without knowledge of the experimental result, which features of the spectrum do we feel confident we have predicted correctly, and which might we have wrong?
Collapse
Affiliation(s)
- Jiří Suchan
- Institute of Advanced Computational Science, Stony Brook University, Stony Brook, New York 11794, USA
| | - Fangchun Liang
- Institute of Advanced Computational Science, Stony Brook University, Stony Brook, New York 11794, USA
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| | - Andrew S Durden
- Institute of Advanced Computational Science, Stony Brook University, Stony Brook, New York 11794, USA
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| | - Benjamin G Levine
- Institute of Advanced Computational Science, Stony Brook University, Stony Brook, New York 11794, USA
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| |
Collapse
|
8
|
Tran T, Ferté A, Vacher M. Simulating Attochemistry: Which Dynamics Method to Use? J Phys Chem Lett 2024; 15:3646-3652. [PMID: 38530933 PMCID: PMC11000647 DOI: 10.1021/acs.jpclett.4c00106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024]
Abstract
Attochemistry aims to exploit the properties of coherent electronic wavepackets excited via attosecond pulses to control the formation of photoproducts. Such molecular processes can, in principle, be simulated with various nonadiabatic dynamics methods, yet the impact of the approximations underlying the methods is rarely assessed. The performances of widely used mixed quantum-classical approaches, Tully surface hopping, and classical Ehrenfest methods are evaluated against the high-accuracy DD-vMCG quantum dynamics. This comparison is conducted for the valence ionization of fluorobenzene. Analyzing the nuclear motion induced in the branching space of the nearby conical intersection, the results show that the mixed quantum-classical methods reproduce quantitatively the average motion of a quantum wavepacket when initiated on a single electronic state. However, they fail to properly capture the nuclear motion induced by an electronic wavepacket along the derivative coupling, the latter originating from the quantum electronic coherence property, key to attochemistry.
Collapse
Affiliation(s)
- Thierry Tran
- Nantes Université, CNRS, CEISAM
UMR 6230, F-44000 Nantes, France
| | - Anthony Ferté
- Nantes Université, CNRS, CEISAM
UMR 6230, F-44000 Nantes, France
| | - Morgane Vacher
- Nantes Université, CNRS, CEISAM
UMR 6230, F-44000 Nantes, France
| |
Collapse
|
9
|
Toldo JM, Mattos RS, Pinheiro M, Mukherjee S, Barbatti M. Recommendations for Velocity Adjustment in Surface Hopping. J Chem Theory Comput 2024; 20:614-624. [PMID: 38207213 DOI: 10.1021/acs.jctc.3c01159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
This study investigates velocity adjustment directions after hopping in surface hopping dynamics. Using fulvene and a protonated Schiff base (PSB4) as case studies, we investigate the population decay and reaction yields of different sets of dynamics with the velocity adjusted in either the nonadiabatic coupling, gradient difference, or momentum directions. For the latter, in addition to the conventional algorithm, we investigated the performance of a reduced kinetic energy reservoir approach recently proposed. Our evaluation also considered velocity adjustment in the directions of approximate nonadiabatic coupling vectors. While results for fulvene are susceptible to the adjustment approach, PSB4 is not. We correlated this dependence to the topography near the conical intersections. When nonadiabatic coupling vectors are unavailable, the gradient difference direction is the best adjustment option. If the gradient difference is also unavailable, a semiempirical vector direction or the momentum direction with a reduced kinetic energy reservoir becomes an excellent option to prevent an artificial excess of back hoppings. The precise velocity adjustment direction is less crucial for describing the nonadiabatic dynamics than the kinetic energy reservoir's size.
Collapse
Affiliation(s)
- Josene M Toldo
- Aix-Marseille University, CNRS, ICR, Marseille 13397, France
| | - Rafael S Mattos
- Aix-Marseille University, CNRS, ICR, Marseille 13397, France
| | - Max Pinheiro
- Aix-Marseille University, CNRS, ICR, Marseille 13397, France
| | | | - Mario Barbatti
- Aix-Marseille University, CNRS, ICR, Marseille 13397, France
- Institut Universitaire de France, Paris 75231, France
| |
Collapse
|
10
|
Gómez S, Spinlove E, Worth G. Benchmarking non-adiabatic quantum dynamics using the molecular Tully models. Phys Chem Chem Phys 2024; 26:1829-1844. [PMID: 38170796 DOI: 10.1039/d3cp03964a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
On-the-fly non-adiabatic dynamics methods are becoming more important as tools to characterise the time evolution of a system after absorbing light. These methods, which calculate quantities such as state energies, gradients and interstate couplings at every time step, circumvent the requirement for pre-computed potential energy surfaces. There are a number of different algorithms used, the most common being Tully Surface Hopping (TSH), but all are approximate solutions to the time-dependent Schrödinger equation and benchmarking is required to understand their accuracy and performance. For this, a common set of systems and observables are required to compare them. In this work, we validate the on-the-fly direct dynamics variational multi-configuration Gaussian (DD-vMCG) method using three molecular systems recently suggested by Ibele and Curchod as molecular versions of the Tully model systems used to test one-dimensional non-adiabatic behaviour [Ibele et al., Phys. Chem. Chem. Phys. 2020, 22, 15183-15196]. Parametrised linear vibronic potential energy surfaces for each of the systems were also tested and compared to on-the-fly results. The molecules, which we term the Ibele-Curchod models, are ethene, DMABN and fulvene and the authors used them to test and compare several versions of the Ab Initio Multiple Spawning (AIMS) method alongside TSH. The three systems present different deactivation pathways after excitation to their ππ* bright states. When comparing DD-vMCG to AIMS and TSH, we obtain crucial differences in some cases, for which an explanation is provided by the classical nature and the chosen initial conditions of the TSH simulations.
Collapse
Affiliation(s)
- Sandra Gómez
- Departamento de Química Física, Universidad de Salamanca, 37008, Spain
| | - Eryn Spinlove
- Faculty of Science and Engineering, Theoretical Chemistry - Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
- Department of Chemistry, University College London, 20 Gordon St, London WC1H 0AJ, UK.
| | - Graham Worth
- Department of Chemistry, University College London, 20 Gordon St, London WC1H 0AJ, UK.
| |
Collapse
|
11
|
Janoš J, Slavíček P. What Controls the Quality of Photodynamical Simulations? Electronic Structure Versus Nonadiabatic Algorithm. J Chem Theory Comput 2023; 19:8273-8284. [PMID: 37939301 PMCID: PMC10688183 DOI: 10.1021/acs.jctc.3c00908] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023]
Abstract
The field of nonadiabatic dynamics has matured over the last decade with a range of algorithms and electronic structure methods available at the moment. While the community currently focuses more on developing and benchmarking new nonadiabatic dynamics algorithms, the underlying electronic structure controls the outcome of nonadiabatic simulations. Yet, the electronic-structure sensitivity analysis is typically neglected. In this work, we present a sensitivity analysis of the nonadiabatic dynamics of cyclopropanone to electronic structure methods and nonadiabatic dynamics algorithms. In particular, we compare wave function-based CASSCF, FOMO-CASCI, MS- and XMS-CASPT2, density-functional REKS, and semiempirical MRCI-OM3 electronic structure methods with the Landau-Zener surface hopping, fewest switches surface hopping, and ab initio multiple spawning with informed stochastic selection algorithms. The results clearly demonstrate that the electronic structure choice significantly influences the accuracy of nonadiabatic dynamics for cyclopropanone even when the potential energy surfaces exhibit qualitative and quantitative similarities. Thus, selecting the electronic structure solely on the basis of the mapping of potential energy surfaces can be misleading. Conversely, we observe no discernible differences in the performance of the nonadiabatic dynamics algorithms across the various methods. Based on the above results, we discuss the present-day practice in computational photodynamics.
Collapse
Affiliation(s)
- Jiří Janoš
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague 6, Czech Republic
| | - Petr Slavíček
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague 6, Czech Republic
| |
Collapse
|
12
|
Talbot JJ, Arias-Martinez JE, Cotton SJ, Head-Gordon M. Fantastical excited state optimized structures and where to find them. J Chem Phys 2023; 159:171102. [PMID: 37916588 DOI: 10.1063/5.0172015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023] Open
Abstract
The quantum chemistry community has developed analytic forces for approximate electronic excited states to enable walking on excited state potential energy surfaces (PES). One can thereby computationally characterize excited state minima and saddle points. Always implicit in using this machinery is the fact that an excited state PES only exists within the realm of the Born-Oppenheimer approximation, where the nuclear and electronic degrees of freedom separate. This work demonstrates through ab initio calculations and simple nonadiabatic dynamics that some excited state minimum structures are fantastical: they appear to exist as stable configurations only as a consequence of the PES construct, rather than being physically observable. Each fantastical structure exhibits an unphysically high predicted harmonic frequency and associated force constant. This fact can serve as a valuable diagnostic of when an optimized excited state structure is non-observable. The origin of this phenomenon can be attributed to the coupling between different electronic states. As PESs approach one another, the upper surface can form a minimum that is very close to a near-touching point. The force constant, evaluated at this minimum, relates to the strength of the electronic coupling rather than to any characteristic excited state vibration. Nonadiabatic dynamics results using a Landau-Zener model illustrate that fantastical excited state structures have extremely short lifetimes on the order of a few femtoseconds. Their appearance in a calculation signals the presence of a nearby conical intersection through which the system will rapidly cross to a lower surface.
Collapse
Affiliation(s)
- Justin J Talbot
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, USA
| | - Juan E Arias-Martinez
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Stephen J Cotton
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, USA
| | - Martin Head-Gordon
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
13
|
Shao C, Shi Z, Xu J, Wang L. Learning Decoherence Time Formulas for Surface Hopping from Quantum Dynamics. J Phys Chem Lett 2023; 14:7680-7689. [PMID: 37606199 DOI: 10.1021/acs.jpclett.3c02019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Surface hopping simulations have achieved great success in many different fields, but their reliability has long been limited by the overcoherence problem. We here present a general machine learning assisted approach to identify optimal decoherence time formulas for surface hopping using exact quantum dynamics as references. In order to avoid computationally expensive force calculations, we use the nuclear kinetic energy and the adiabatic energy difference to iteratively generate the descriptor space. Through multilayer screening of the candidate descriptors and discrete optimization of the relevant parameters, we obtain new energy-based decoherence time formulas. As benchmarked in thousands of diverse multilevel systems and six standard scattering models, surface hopping with our new decoherence time formulas nearly reproduces the exact quantum dynamics while maintaining high efficiency. Thereby, our approach provides a promising avenue for systematically improving the accuracy of surface hopping simulations in complex systems from quantum dynamics data.
Collapse
Affiliation(s)
- Cancan Shao
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Zhecun Shi
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jiabo Xu
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Linjun Wang
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
14
|
Mandal A, Taylor MA, Weight BM, Koessler ER, Li X, Huo P. Theoretical Advances in Polariton Chemistry and Molecular Cavity Quantum Electrodynamics. Chem Rev 2023; 123:9786-9879. [PMID: 37552606 PMCID: PMC10450711 DOI: 10.1021/acs.chemrev.2c00855] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Indexed: 08/10/2023]
Abstract
When molecules are coupled to an optical cavity, new light-matter hybrid states, so-called polaritons, are formed due to quantum light-matter interactions. With the experimental demonstrations of modifying chemical reactivities by forming polaritons under strong light-matter interactions, theorists have been encouraged to develop new methods to simulate these systems and discover new strategies to tune and control reactions. This review summarizes some of these exciting theoretical advances in polariton chemistry, in methods ranging from the fundamental framework to computational techniques and applications spanning from photochemistry to vibrational strong coupling. Even though the theory of quantum light-matter interactions goes back to the midtwentieth century, the gaps in the knowledge of molecular quantum electrodynamics (QED) have only recently been filled. We review recent advances made in resolving gauge ambiguities, the correct form of different QED Hamiltonians under different gauges, and their connections to various quantum optics models. Then, we review recently developed ab initio QED approaches which can accurately describe polariton states in a realistic molecule-cavity hybrid system. We then discuss applications using these method advancements. We review advancements in polariton photochemistry where the cavity is made resonant to electronic transitions to control molecular nonadiabatic excited state dynamics and enable new photochemical reactivities. When the cavity resonance is tuned to the molecular vibrations instead, ground-state chemical reaction modifications have been demonstrated experimentally, though its mechanistic principle remains unclear. We present some recent theoretical progress in resolving this mystery. Finally, we review the recent advances in understanding the collective coupling regime between light and matter, where many molecules can collectively couple to a single cavity mode or many cavity modes. We also lay out the current challenges in theory to explain the observed experimental results. We hope that this review will serve as a useful document for anyone who wants to become familiar with the context of polariton chemistry and molecular cavity QED and thus significantly benefit the entire community.
Collapse
Affiliation(s)
- Arkajit Mandal
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Michael A.D. Taylor
- The
Institute of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627, United States
| | - Braden M. Weight
- Department
of Physics and Astronomy, University of
Rochester, Rochester, New York 14627, United
States
| | - Eric R. Koessler
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
| | - Xinyang Li
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
- Theoretical
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Pengfei Huo
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
- The
Institute of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
15
|
Gardner J, Habershon S, Maurer RJ. Assessing Mixed Quantum-Classical Molecular Dynamics Methods for Nonadiabatic Dynamics of Molecules on Metal Surfaces. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:15257-15270. [PMID: 37583439 PMCID: PMC10424245 DOI: 10.1021/acs.jpcc.3c03591] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/30/2023] [Indexed: 08/17/2023]
Abstract
Mixed quantum-classical (MQC) methods for simulating the dynamics of molecules at metal surfaces have the potential to accurately and efficiently provide mechanistic insight into reactive processes. Here, we introduce simple two-dimensional models for the scattering of diatomic molecules at metal surfaces based on recently published electronic structure data. We apply several MQC methods to investigate their ability to capture how nonadiabatic effects influence molecule-metal energy transfer during the scattering process. Specifically, we compare molecular dynamics with electronic friction, Ehrenfest dynamics, independent electron surface hopping, and the broadened classical master equation approach. In the case of independent electron surface hopping, we implement a simple decoherence correction approach and assess its impact on vibrationally inelastic scattering. Our results show that simple, low-dimensional models can be used to qualitatively capture experimentally observed vibrational energy transfer and provide insight into the relative performance of different MQC schemes. We observe that all approaches predict similar kinetic energy dependence but return different vibrational energy distributions. Finally, by varying the molecule-metal coupling, we can assess the coupling regime in which some MQC methods become unsuitable.
Collapse
Affiliation(s)
- James Gardner
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Scott Habershon
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Reinhard J. Maurer
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
- Department
of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
16
|
Lassmann Y, Curchod BFE. Probing the sensitivity of ab initio multiple spawning to its parameters. Theor Chem Acc 2023; 142:66. [PMID: 37520272 PMCID: PMC10382418 DOI: 10.1007/s00214-023-03004-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023]
Abstract
Full multiple spawning (FMS) offers a strategy to simulate the nonadiabatic dynamics of molecular systems by describing their nuclear wavefunctions by a linear combination of coupled trajectory basis functions (TBFs). Applying a series of controlled approximations to the full multiple spawning (FMS) equations leads to the ab initio multiple spawning (AIMS), which is compatible with an on-the-fly propagation of the TBFs and an accurate description of nonadiabatic processes. The AIMS strategy and its numerical implementations, however, rely on a series of user-defined parameters. Herein, we investigate the influence of these parameters on the electronic-state population of two molecular systems- trans-azomethane and a two-dimensional model of the butatriene cation. This work highlights the stability of AIMS with respect to most of its parameters, underlines the specific parameters that require particular attention from the user of the method, and offers prescriptions for an informed selection of their value. Supplementary Information The online version contains supplementary material available at 10.1007/s00214-023-03004-w.
Collapse
Affiliation(s)
- Yorick Lassmann
- Centre for Computational Chemistry, School of Chemistry, Cantock’s Close, University of Bristol, Bristol, BS8 1TS UK
| | - Basile F. E. Curchod
- Centre for Computational Chemistry, School of Chemistry, Cantock’s Close, University of Bristol, Bristol, BS8 1TS UK
| |
Collapse
|
17
|
Abstract
We present a nonadiabatic classical-trajectory approach that offers the best of both worlds between fewest-switches surface hopping (FSSH) and quasiclassical mapping dynamics. This mapping approach to surface hopping (MASH) propagates the nuclei on the active adiabatic potential-energy surface, such as in FSSH. However, unlike in FSSH, transitions between active surfaces are deterministic and occur when the electronic mapping variables evolve between specified regions of the electronic phase space. This guarantees internal consistency between the active surface and the electronic degrees of freedom throughout the dynamics. MASH is rigorously derivable from exact quantum mechanics as a limit of the quantum-classical Liouville equation (QCLE), leading to a unique prescription for momentum rescaling and frustrated hops. Hence, a quantum-jump procedure can, in principle, be used to systematically converge the accuracy of the results to that of the QCLE. This jump procedure also provides a rigorous framework for deriving approximate decoherence corrections similar to those proposed for FSSH. We apply MASH to simulate the nonadiabatic dynamics in various model systems and show that it consistently produces more accurate results than FSSH at a comparable computational cost.
Collapse
|
18
|
Ovad T, Sapunar M, Sršeň Š, Slavíček P, Mašín Z, Jones NC, Hoffmann SV, Ranković M, Fedor J. Excitation and fragmentation of the dielectric gas C 4F 7N: Electrons vs photons. J Chem Phys 2023; 158:014303. [PMID: 36610949 DOI: 10.1063/5.0130216] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
C4F7N is a promising candidate for the replacement of sulfur hexafluoride as an insulating medium, and it is important to understand the chemical changes initiated in the molecule by collision with free electrons, specifically the formation of neutral fragments. The first step of neutral fragmentation is electronic excitation, yet neither the absorption spectrum in the vacuum ultraviolet (VUV) region nor the electron energy loss spectrum have previously been reported. Here, we experimentally probed the excited states by VUV photoabsorption spectroscopy and electron energy loss spectroscopy (EELS). We found that the distribution of states populated upon electron impact with low-energy electrons is significantly different from that following photoabsorption. This difference was confirmed and interpreted with ab initio modeling of both VUV and EELS spectra. We propose here a new computational protocol for the simulation of EELS spectra combining the Born approximation with approximate forms of correlated wave functions, which allows us to calculate the (usually very expensive) scattering cross sections at a cost similar to the calculation of oscillator strengths. Finally, we perform semi-classical non-adiabatic dynamics simulations to investigate the possible neutral fragments of the molecule formed through electron-induced neutral dissociation. We show that the product distribution is highly non-statistical.
Collapse
Affiliation(s)
- Tomáš Ovad
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, Prague 6, Czech Republic
| | - Marin Sapunar
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, Prague 6, Czech Republic
| | - Štěpán Sršeň
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, Prague 6, Czech Republic
| | - Petr Slavíček
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, Prague 6, Czech Republic
| | - Zdeněk Mašín
- Faculty of Mathematics and Physics, Charles University, Institute of Theoretical Physics, V Holešovičkách 2, 18000 Prague, Czech Republic
| | - Nykola C Jones
- ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark
| | - Søren Vrønning Hoffmann
- ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark
| | - Miloš Ranković
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, Prague 8, Czech Republic
| | - Juraj Fedor
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, Prague 8, Czech Republic
| |
Collapse
|
19
|
Rivlin T, Pollak E. Nonadiabatic Couplings Can Speed Up Quantum Tunneling Transition Path Times. J Phys Chem Lett 2022; 13:10558-10566. [PMID: 36342976 PMCID: PMC9677498 DOI: 10.1021/acs.jpclett.2c03008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Quantum tunneling is known to play an important role in the dynamics of systems with nonadiabatic couplings. However, until recently, the time-domain properties of nonadiabatic scattering have been severely under-explored. Using numerically exact quantum methods, we study the impact that nonadiabatic couplings have on the time it takes to tunnel through a barrier. We find that the Wigner phase time is the appropriate measure to use when determining the tunneling flight time also when considering nonadiabatic systems. The central result of the present study is that in an avoided crossing system in one dimension, the nonadiabatic couplings speed up the tunneling event, relative to the adiabatic case in which all nonadiabatic coupling is ignored. This has implications for both the study of quantum tunneling times and for the field of nonadiabatic scattering and chemistry.
Collapse
|
20
|
Chakraborty P, Liu Y, McClung S, Weinacht T, Matsika S. Nonadiabatic Excited State Dynamics of Organic Chromophores: Take-Home Messages. J Phys Chem A 2022; 126:6021-6031. [PMID: 36069531 DOI: 10.1021/acs.jpca.2c04671] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nonadiabatic excited state dynamics are important in a variety of processes. Theoretical and experimental developments have allowed for a great progress in this area, while combining the two is often necessary and the best approach to obtain insight into the photophysical behavior of molecules. In this Feature Article we use examples of our recent work combining time-resolved photoelectron spectroscopy with theoretical nonadiabatic dynamics to highlight important lessons we learned. We compare the nonadiabatic excited state dynamics of three different organic molecules with the aim of elucidating connections between structure and dynamics. Calculations and measurements are compared for uracil, 1,3-cyclooctadiene, and 1,3-cyclohexadiene. The comparison highlights the role of rigidity in influencing the dynamics and the difficulty of capturing the dynamics accurately with calculations.
Collapse
Affiliation(s)
- Pratip Chakraborty
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States.,Division of Theoretical Chemistry and Biology, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Yusong Liu
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, United States.,Stanford PULSE Institute, SLAC National Laboratory, Menlo Park, California 94025, United States
| | - Samuel McClung
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, United States
| | - Thomas Weinacht
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, United States
| | - Spiridoula Matsika
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
21
|
He X, Wu B, Rivlin T, Liu J, Pollak E. Transition Path Flight Times and Nonadiabatic Electronic Transitions. J Phys Chem Lett 2022; 13:6966-6974. [PMID: 35877977 PMCID: PMC9358656 DOI: 10.1021/acs.jpclett.2c01425] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Transition path flight times are studied for scattering on two electronic surfaces with a single crossing. These flight times reveal nontrivial quantum effects such as resonance lifetimes and nonclassical passage times and reveal that nonadiabatic effects often increase flight times. The flight times are computed using numerically exact time propagation and compared with results obtained from the Fewest Switches Surface Hopping (FSSH) method. Comparison of the two methods shows that the FSSH method is reliable for transition path times only when the scattering is classically allowed on the relevant adiabatic surfaces. However, where quantum effects such as tunneling and resonances dominate, the FSSH method is not adequate to accurately predict the correct times and transition probabilities. These results highlight limitations in methods which do not account for quantum interference effects, and suggest that measuring flight times is important for obtaining insights from the time-domain into quantum effects in nonadiabatic scattering.
Collapse
Affiliation(s)
- Xin He
- Beijing
National Laboratory for Molecular Sciences, Institute of Theoretical
and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Baihua Wu
- Beijing
National Laboratory for Molecular Sciences, Institute of Theoretical
and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Tom Rivlin
- Chemical
and Biological Physics Department, Weizmann
Institute of Science, 76100 Rehovot, Israel
| | - Jian Liu
- Beijing
National Laboratory for Molecular Sciences, Institute of Theoretical
and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Eli Pollak
- Chemical
and Biological Physics Department, Weizmann
Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
22
|
Marsili E, Prlj A, Curchod BFE. A Theoretical Perspective on the Actinic Photochemistry of 2-Hydroperoxypropanal. J Phys Chem A 2022; 126:5420-5433. [PMID: 35900368 PMCID: PMC9393889 DOI: 10.1021/acs.jpca.2c03783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The photochemical reactions triggered by the sunlight
absorption
of transient volatile organic compounds in the troposphere are notoriously
difficult to characterize experimentally due to the unstable and short-lived
nature of these organic molecules. Some members of this family of
compounds are likely to exhibit a rich photochemistry given the diversity
of functional groups they can bear. Even more interesting is the photochemical
fate of volatile organic compounds bearing more than one functional
group that can absorb light—this is the case, for example,
of α-hydroperoxycarbonyls, which are formed during the oxidation
of isoprene. Experimental observables characterizing the photochemistry
of these molecules like photoabsorption cross-sections or photolysis
quantum yields are currently missing, and we propose here to leverage
a recently developed computational protocol to predict in silico the
photochemical fate of 2-hydroperoxypropanal (2-HPP) in the actinic
region. We combine different levels of electronic structure methods—SCS-ADC(2)
and XMS-CASPT2—with the nuclear ensemble approach and trajectory
surface hopping to understand the mechanistic details of the possible
nonradiative processes of 2-HPP. In particular, we predict the photoabsorption
cross-section and the wavelength-dependent quantum yields for the
observed photolytic pathways and combine them to determine in silico
photolysis rate constants. The limitations of our protocol and possible
future improvements are discussed.
Collapse
Affiliation(s)
- Emanuele Marsili
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | - Antonio Prlj
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | - Basile F E Curchod
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| |
Collapse
|
23
|
Avagliano D, Bonfanti M, Nenov A, Garavelli M. Automatized protocol and interface to simulate QM/MM time-resolved transient absorption at TD-DFT level with COBRAMM. J Comput Chem 2022; 43:1641-1655. [PMID: 35815854 PMCID: PMC9544370 DOI: 10.1002/jcc.26966] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 12/24/2022]
Abstract
We present a series of new implementations that we recently introduced in COBRAMM, the open-source academic software developed in our group. The goal of these implementations is to offer an automatized workflow and interface to simulate time-resolved transient absorption (TA) spectra of medium-to-big chromophore embedded in a complex environment. Therefore, the excited states absorption and the stimulated emission are simulated along nonadiabatic dynamics performed with trajectory surface hopping. The possibility of treating systems from medium to big size is given by the use of time-dependent density functional theory (TD-DFT) and the presence of the environment is taken into account employing a hybrid quantum mechanics/molecular mechanics (QM/MM) scheme. The full implementation includes a series of auxiliary scripts to properly setup the QM/MM system, the calculation of the wavefunction overlap along the dynamics for the propagation, the evaluation of the transition dipole moment at linear response TD-DFT level, and scripts to setup, run and analyze the TA from an ensemble of trajectories. Altogether, we believe that our implementation will open the door to the easily simulate the time-resolved TA of systems so far computationally inaccessible.
Collapse
Affiliation(s)
- Davide Avagliano
- Dipartimento di Chimica Industriale "Toso Montanari", Università degli Studi di Bologna, Bologna, Italy
| | - Matteo Bonfanti
- Dipartimento di Chimica Industriale "Toso Montanari", Università degli Studi di Bologna, Bologna, Italy.,Fondazione Human Technopole - Viale Rita Levi-Montalcini, 1 - Area MIND - Cargo 6 - 20157, Milano, Italy
| | - Artur Nenov
- Dipartimento di Chimica Industriale "Toso Montanari", Università degli Studi di Bologna, Bologna, Italy
| | - Marco Garavelli
- Dipartimento di Chimica Industriale "Toso Montanari", Università degli Studi di Bologna, Bologna, Italy
| |
Collapse
|
24
|
Ten Brink M, Gräber S, Hopjan M, Jansen D, Stolpp J, Heidrich-Meisner F, Blöchl PE. Real-time non-adiabatic dynamics in the one-dimensional Holstein model: Trajectory-based vs exact methods. J Chem Phys 2022; 156:234109. [PMID: 35732530 DOI: 10.1063/5.0092063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We benchmark a set of quantum-chemistry methods, including multitrajectory Ehrenfest, fewest-switches surface-hopping, and multiconfigurational-Ehrenfest dynamics, against exact quantum-many-body techniques by studying real-time dynamics in the Holstein model. This is a paradigmatic model in condensed matter theory incorporating a local coupling of electrons to Einstein phonons. For the two-site and three-site Holstein model, we discuss the exact and quantum-chemistry methods in terms of the Born-Huang formalism, covering different initial states, which either start on a single Born-Oppenheimer surface, or with the electron localized to a single site. For extended systems with up to 51 sites, we address both the physics of single Holstein polarons and the dynamics of charge-density waves at finite electron densities. For these extended systems, we compare the quantum-chemistry methods to exact dynamics obtained from time-dependent density matrix renormalization group calculations with local basis optimization (DMRG-LBO). We observe that the multitrajectory Ehrenfest method, in general, only captures the ultrashort time dynamics accurately. In contrast, the surface-hopping method with suitable corrections provides a much better description of the long-time behavior but struggles with the short-time description of coherences between different Born-Oppenheimer states. We show that the multiconfigurational Ehrenfest method yields a significant improvement over the multitrajectory Ehrenfest method and can be converged to the exact results in small systems with moderate computational efforts. We further observe that for extended systems, this convergence is slower with respect to the number of configurations. Our benchmark study demonstrates that DMRG-LBO is a useful tool for assessing the quality of the quantum-chemistry methods.
Collapse
Affiliation(s)
- M Ten Brink
- Institut für Theoretische Physik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - S Gräber
- Institut für Theoretische Physik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - M Hopjan
- Institut für Theoretische Physik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - D Jansen
- Institut für Theoretische Physik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - J Stolpp
- Institut für Theoretische Physik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - F Heidrich-Meisner
- Institut für Theoretische Physik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - P E Blöchl
- Institut für Theoretische Physik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
25
|
Avagliano D, Lorini E, González L. Sampling effects in quantum mechanical/molecular mechanics trajectory surface hopping non-adiabatic dynamics. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20200381. [PMID: 35341304 PMCID: PMC8958275 DOI: 10.1098/rsta.2020.0381] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/01/2021] [Indexed: 05/29/2023]
Abstract
The impact of different initial conditions in non-adiabatic trajectory surface hopping dynamics within a hybrid quantum mechanical/molecular mechanics scheme is investigated. The influence of a quantum sampling, based on a Wigner distribution, a fully thermal sampling, based on classical molecular dynamics, and a quantum sampled system, but thermally equilibrated with the environment, is investigated on the relaxation dynamics of solvated fulvene after light irradiation. We find that the decay from the first singlet excited state to the ground state shows high dependency on the initial condition and simulation parameters. The three sampling methods lead to different distributions of initial geometries and momenta, which then affect the fate of the excited state dynamics. We evaluated both the effect of sampling geometries and momenta, analysing how the ultrafast decay of fulvene changes accordingly. The results are expected to be of interest to decide how to initialize non-adiabatic dynamics in the presence of the environment. This article is part of the theme issue 'Chemistry without the Born-Oppenheimer approximation'.
Collapse
Affiliation(s)
- Davide Avagliano
- Faculty of Chemistry, Institute of Theoretical Chemistry, University of Vienna, Währinger Straße 17, A-1180 Vienna, Austria
| | - Emilio Lorini
- Faculty of Chemistry, Institute of Theoretical Chemistry, University of Vienna, Währinger Straße 17, A-1180 Vienna, Austria
| | - Leticia González
- Faculty of Chemistry, Institute of Theoretical Chemistry, University of Vienna, Währinger Straße 17, A-1180 Vienna, Austria
- Vienna Research Platform on Accelerating Photoreaction Discovery, University of Vienna, Währinger Straße 17, A-1180 Vienna, Austria
| |
Collapse
|
26
|
Talotta F, Lauvergnat D, Agostini F. Describing the photo-isomerization of a retinal chromophore model with coupled and quantum trajectories. J Chem Phys 2022; 156:184104. [DOI: 10.1063/5.0089415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The exact factorization of the electron-nuclear wavefunction is applied to the study of the photo- isomerization of a retinal chromophore model. We describe such an ultrafast nonadiabatic process by analyzing the time-dependent potentials of the theory and by mimicking nuclear dynamics with quantum and coupled trajectories. The time-dependent vector and scalar potentials are the signature of the exact factorization, as they guide nuclear dynamics by encoding the complete electronic dynamics and including excited-state effects. Analysis of the potentials is, thus, essential - when possible - to predict the time-dependent behavior of the system of interest. In this work, we employ the exact time-dependent potentials, available for the numerically-exactly solvable model used here, to propagate quantum nuclear trajectories representing the isomerization reaction of the retinal chromophore. The quantum trajectories are the best possible trajectory-based description of the reaction when using the exact-factorization formalism, and thus allow us to assess the performance of the coupled-trajectory, fully approximate, schemes derived from the exact-factorization equations.
Collapse
Affiliation(s)
| | - David Lauvergnat
- Institut de Chimie Physique, UMR 8000, CNRS Délégation Ile-de-France Sud, France
| | | |
Collapse
|
27
|
Vandaele E, Mališ M, Luber S. The ΔSCF method for non-adiabatic dynamics of systems in the liquid phase. J Chem Phys 2022; 156:130901. [PMID: 35395890 DOI: 10.1063/5.0083340] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Computational studies of ultrafast photoinduced processes give valuable insights into the photochemical mechanisms of a broad range of compounds. In order to accurately reproduce, interpret, and predict experimental results, which are typically obtained in a condensed phase, it is indispensable to include the condensed phase environment in the computational model. However, most studies are still performed in vacuum due to the high computational cost of state-of-the-art non-adiabatic molecular dynamics (NAMD) simulations. The quantum mechanical/molecular mechanical (QM/MM) solvation method has been a popular model to perform photodynamics in the liquid phase. Nevertheless, the currently used QM/MM embedding techniques cannot sufficiently capture all solute-solvent interactions. In this Perspective, we will discuss the efficient ΔSCF electronic structure method and its applications with respect to the NAMD of solvated compounds, with a particular focus on explicit quantum mechanical solvation. As more research is required for this method to reach its full potential, some challenges and possible directions for future research are presented as well.
Collapse
Affiliation(s)
- Eva Vandaele
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Momir Mališ
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Sandra Luber
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
28
|
Ma XR, Zhang J, Xiong YC, Zhou W. Revising the performance of the Landau–Zener surface hopping on some typical one-dimensional nonadiabatic models. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2051761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Xiang-Rui Ma
- Department of Material Physics, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan, People's Republic of China
- Collaborative Innovation Center for Optoelectronic Technology, Hubei University of Automotive Technology, Shiyan, People's Republic of China
| | - Jun Zhang
- Department of Material Physics, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan, People's Republic of China
- Collaborative Innovation Center for Optoelectronic Technology, Hubei University of Automotive Technology, Shiyan, People's Republic of China
| | - Yong-Chen Xiong
- Department of Material Physics, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan, People's Republic of China
- Collaborative Innovation Center for Optoelectronic Technology, Hubei University of Automotive Technology, Shiyan, People's Republic of China
| | - Wanghuai Zhou
- Department of Material Physics, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan, People's Republic of China
- Collaborative Innovation Center for Optoelectronic Technology, Hubei University of Automotive Technology, Shiyan, People's Republic of China
| |
Collapse
|
29
|
T. do Casal M, Toldo JM, Pinheiro Jr M, Barbatti M. Fewest switches surface hopping with Baeck-An couplings. OPEN RESEARCH EUROPE 2022; 1:49. [PMID: 37645211 PMCID: PMC10446015 DOI: 10.12688/openreseurope.13624.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/01/2022] [Indexed: 08/31/2023]
Abstract
In the Baeck-An (BA) approximation, first-order nonadiabatic coupling vectors are given in terms of adiabatic energy gaps and the second derivative of the gaps with respect to the coupling coordinate. In this paper, a time-dependent (TD) BA approximation is derived, where the couplings are computed from the energy gaps and their second time-derivatives. TD-BA couplings can be directly used in fewest switches surface hopping, enabling nonadiabatic dynamics with any electronic structure methods able to provide excitation energies and energy gradients. Test results of surface hopping with TD-BA couplings for ethylene and fulvene show that the TD-BA approximation delivers a qualitatively correct picture of the dynamics and a semiquantitative agreement with reference data computed with exact couplings. Nevertheless, TD-BA does not perform well in situations conjugating strong couplings and small velocities. Considered the uncertainties in the method, TD-BA couplings could be a competitive approach for inexpensive, exploratory dynamics with a small trajectories ensemble. We also assessed the potential use of TD-BA couplings for surface hopping dynamics with time-dependent density functional theory (TDDFT), but the results are not encouraging due to singlet instabilities near the crossing seam with the ground state.
Collapse
|
30
|
T. do Casal M, Toldo JM, Pinheiro Jr M, Barbatti M. Fewest switches surface hopping with Baeck-An couplings. OPEN RESEARCH EUROPE 2022; 1:49. [PMID: 37645211 PMCID: PMC10446015 DOI: 10.12688/openreseurope.13624.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/01/2022] [Indexed: 03/12/2024]
Abstract
In the Baeck-An (BA) approximation, first-order nonadiabatic coupling vectors are given in terms of adiabatic energy gaps and the second derivative of the gaps with respect to the coupling coordinate. In this paper, a time-dependent (TD) BA approximation is derived, where the couplings are computed from the energy gaps and their second time-derivatives. TD-BA couplings can be directly used in fewest switches surface hopping, enabling nonadiabatic dynamics with any electronic structure methods able to provide excitation energies and energy gradients. Test results of surface hopping with TD-BA couplings for ethylene and fulvene show that the TD-BA approximation delivers a qualitatively correct picture of the dynamics and a semiquantitative agreement with reference data computed with exact couplings. Nevertheless, TD-BA does not perform well in situations conjugating strong couplings and small velocities. Considered the uncertainties in the method, TD-BA couplings could be a competitive approach for inexpensive, exploratory dynamics with a small trajectories ensemble. We also assessed the potential use of TD-BA couplings for surface hopping dynamics with time-dependent density functional theory (TDDFT), but the results are not encouraging due to singlet instabilities near the crossing seam with the ground state.
Collapse
|
31
|
Ibele LM, Curchod BFE, Agostini F. A Photochemical Reaction in Different Theoretical Representations. J Phys Chem A 2022; 126:1263-1281. [PMID: 35157450 PMCID: PMC8883471 DOI: 10.1021/acs.jpca.1c09604] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
The Born–Oppenheimer
picture has forged our representation
and interpretation of photochemical processes, from photoexcitation
down to the passage through a conical intersection, a funnel connecting
different electronic states. In this work, we analyze a full in silico
photochemical experiment, from the explicit electronic excitation
by a laser pulse to the formation of photoproducts following a nonradiative
decay through a conical intersection, by contrasting the picture offered
by Born–Oppenheimer and that proposed by the exact factorization.
The exact factorization offers an alternative understanding of photochemistry
that does not rely on concepts such as electronic states, nonadiabatic
couplings, and conical intersections. On the basis of nonadiabatic
quantum dynamics performed for a two-state 2D model system, this work
allows us to compare Born–Oppenheimer and exact factorization
for (i) an explicit photoexcitation with and without the Condon approximation,
(ii) the passage of a nuclear wavepacket through a conical intersection,
(iii) the formation of excited stationary states in the Franck–Condon
region, and (iv) the use of classical and quantum trajectories in
the exact factorization picture to capture nonadiabatic processes
triggered by a laser pulse.
Collapse
Affiliation(s)
- Lea M Ibele
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Basile F E Curchod
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Federica Agostini
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, 91405 Orsay, France
| |
Collapse
|
32
|
Lu CY, Lee TY, Chou CC. Moving boundary truncated grid method for electronic nonadiabatic dynamics. J Chem Phys 2022; 156:044107. [DOI: 10.1063/5.0078909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Chun-Yaung Lu
- Texas Advanced Computing Center, The University of Texas at Austin, Austin, Texas 78758, USA
| | - Tsung-Yen Lee
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chia-Chun Chou
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
33
|
Runeson JE, Richardson JO. Quantum Entanglement from Classical Trajectories. PHYSICAL REVIEW LETTERS 2021; 127:250403. [PMID: 35029436 DOI: 10.1103/physrevlett.127.250403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/20/2021] [Accepted: 11/05/2021] [Indexed: 06/14/2023]
Abstract
A long-standing challenge in mixed quantum-classical trajectory simulations is the treatment of entanglement between the classical and quantal degrees of freedom. We present a novel approach that describes the emergence of entangled states entirely in terms of independent and deterministic Ehrenfest-like classical trajectories. For a two-level quantum system in a classical environment, this is derived by mapping the quantum system onto a path-integral representation of a spin 1/2. We demonstrate that the method correctly accounts for coherence and decoherence and thus reproduces the splitting of a wave packet in a nonadiabatic scattering problem. This discovery opens up a new class of simulations as an alternative to stochastic surface-hopping, coupled-trajectory, or semiclassical approaches.
Collapse
Affiliation(s)
- Johan E Runeson
- Laboratory of Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | | |
Collapse
|
34
|
Gómez S, Soysal EN, Worth GA. Micro-Solvated DMABN: Excited State Quantum Dynamics and Dual Fluorescence Spectra. Molecules 2021; 26:7247. [PMID: 34885829 PMCID: PMC8658867 DOI: 10.3390/molecules26237247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/04/2022] Open
Abstract
In this work, we report a complete analysis by theoretical and spectroscopic methods of the short-time behaviour of 4-(dimethylamino)benzonitrile (DMABN) in the gas phase as well as in cyclohexane, tetrahydrofuran, acetonitrile, and water solution, after excitation to the La state. The spectroscopic properties of DMABN were investigated experimentally using UV absorption and fluorescence emission spectroscopy. The computational study was developed at different electronic structure levels and using the Polarisable Continuum Model (PCM) and explicit solvent molecules to reproduce the solvent environment. Additionally, excited state quantum dynamics simulations in the diabatic picture using the direct dynamics variational multiconfigurational Gaussian (DD-vMCG) method were performed, the largest quantum dynamics "on-the-fly" simulations performed with this method until now. The comparison with fully converged multilayer multiconfigurational time-dependent Hartree (ML-MCTDH) dynamics on parametrised linear vibronic coupling (LVC) potentials show very similar population decays and evolution of the nuclear wavepacket. The ring C=C stretching and three methyl tilting modes are identified as the responsible motions for the internal conversion from the La to the Lb states. No major differences are observed in the ultrafast initial decay in different solvents, but we show that this effect depends strongly on the level of electronic structure used.
Collapse
Affiliation(s)
- Sandra Gómez
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK;
| | | | - Graham A. Worth
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK;
| |
Collapse
|
35
|
Abstract
In this paper, we discuss coupled-trajectory schemes for molecular-dynamics simulations of excited-state processes. New coupled-trajectory strategies to capture decoherence effects, revival of coherence and nonadiabatic interferences in long-time dynamics are proposed, and compared to independent-trajectory schemes. The working framework is provided by the exact factorization of the electron-nuclear wave function, and it exploits ideas emanating from various surface-hopping schemes. The new coupled-trajectory algorithms are tested on a one-dimensional two-state system using different model parameters which allow one to induce different dynamics. The benchmark is provided by the numerically exact solution of the time-dependent Schrödinger equation.
Collapse
Affiliation(s)
- Carlotta Pieroni
- CNRS, Institut de Chimie Physique UMR8000, Université Paris-Saclay, 91405 Orsay, France.,Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Federica Agostini
- CNRS, Institut de Chimie Physique UMR8000, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
36
|
Weight BM, Mandal A, Huo P. Ab initio symmetric quasi-classical approach to investigate molecular Tully models. J Chem Phys 2021; 155:084106. [PMID: 34470343 DOI: 10.1063/5.0061934] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We perform on-the-fly non-adiabatic molecular dynamics simulations using the symmetrical quasi-classical (SQC) approach with the recently suggested molecular Tully models: ethylene and fulvene. We attempt to provide benchmarks of the SQC methods using both the square and triangle windowing schemes as well as the recently proposed electronic zero-point-energy correction scheme (the so-called γ correction). We use the quasi-diabatic propagation scheme to directly interface the diabatic SQC methods with adiabatic electronic structure calculations. Our results showcase the drastic improvement of the accuracy by using the trajectory-adjusted γ-corrections, which outperform the widely used trajectory surface hopping method with decoherence corrections. These calculations provide useful and non-trivial tests to systematically investigate the numerical performance of various diabatic quantum dynamics approaches, going beyond simple diabatic model systems that have been used as the major workhorse in the quantum dynamics field. At the same time, these available benchmark studies will also likely foster the development of new quantum dynamics approaches based on these techniques.
Collapse
Affiliation(s)
- Braden M Weight
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - Arkajit Mandal
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| | - Pengfei Huo
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
37
|
He X, Wu B, Gong Z, Liu J. Commutator Matrix in Phase Space Mapping Models for Nonadiabatic Quantum Dynamics. J Phys Chem A 2021; 125:6845-6863. [PMID: 34339600 DOI: 10.1021/acs.jpca.1c04429] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We show that a novel, general phase space mapping Hamiltonian for nonadiabatic systems, which is reminiscent of the renowned Meyer-Miller mapping Hamiltonian, involves a commutator variable matrix rather than the conventional zero-point-energy parameter. In the exact mapping formulation on constraint space for phase space approaches for nonadiabatic dynamics, the general mapping Hamiltonian with commutator variables can be employed to generate approximate trajectory-based dynamics. Various benchmark model tests, which range from gas phase to condensed phase systems, suggest that the overall performance of the general mapping Hamiltonian is better than that of the conventional Meyer-Miller Hamiltonian.
Collapse
Affiliation(s)
- Xin He
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Baihua Wu
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhihao Gong
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jian Liu
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
38
|
Talotta F, Morisset S, Rougeau N, Lauvergnat D, Agostini F. Electronic Structure and Excited States of the Collision Reaction O( 3P) + C 2H 4: A Multiconfigurational Perspective. J Phys Chem A 2021; 125:6075-6088. [PMID: 34259520 DOI: 10.1021/acs.jpca.1c02923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present a study of the O(3P) + C2H4 scattering reaction, a process that takes place in the interstellar medium and is of relevance in atmospheric chemistry as well. A comprehensive investigation of the electronic properties of the system has been carried out based on multiconfigurational ab initio CASSCF/CASPT2 calculations, using a robust and consistent active space that can deliver accurate potential energy surfaces in the key regions visited by the system. The paper discloses detailed description of the primary reaction pathways and the relevant singlet and triplet excited states at the CASSCF and CASPT2 level, including an accurate description of the critical configurations, such as minima and transition states. The chosen active space and the CASSCF/CASPT2 computational protocol are assessed against coupled-cluster calculations to further check the stability and reliability of the entire multiconfigurational procedure.
Collapse
Affiliation(s)
- Francesco Talotta
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, 91405 Orsay, France.,Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, UMR8214, 91405 Orsay, France
| | - Sabine Morisset
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, UMR8214, 91405 Orsay, France
| | - Nathalie Rougeau
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, UMR8214, 91405 Orsay, France
| | - David Lauvergnat
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, 91405 Orsay, France
| | - Federica Agostini
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, 91405 Orsay, France
| |
Collapse
|
39
|
Vindel-Zandbergen P, Ibele LM, Ha JK, Min SK, Curchod BFE, Maitra NT. Study of the Decoherence Correction Derived from the Exact Factorization Approach for Nonadiabatic Dynamics. J Chem Theory Comput 2021; 17:3852-3862. [PMID: 34138553 PMCID: PMC8280698 DOI: 10.1021/acs.jctc.1c00346] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
![]()
We present a detailed
study of the decoherence correction to surface
hopping that was recently derived from the exact factorization approach.
Ab initio multiple spawning calculations that use the same initial
conditions and the same electronic structure method are used as a
reference for three molecules: ethylene, the methaniminium cation,
and fulvene, for which nonadiabatic dynamics follows a photoexcitation.
A comparison with the Granucci–Persico energy-based decoherence
correction and the augmented fewest-switches surface-hopping scheme
shows that the three decoherence-corrected methods operate on individual
trajectories in a qualitatively different way, but the results averaged
over trajectories are similar for these systems.
Collapse
Affiliation(s)
| | - Lea M Ibele
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K
| | - Jong-Kwon Ha
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Seung Kyu Min
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Basile F E Curchod
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K
| | - Neepa T Maitra
- Department of Physics, Rutgers University, Newark, New Jersey 07102, United States
| |
Collapse
|
40
|
Lassmann Y, Curchod BFE. AIMSWISS-Ab initio multiple spawning with informed stochastic selections. J Chem Phys 2021; 154:211106. [PMID: 34240975 DOI: 10.1063/5.0052118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Ab initio multiple spawning (AIMS) offers a reliable strategy to describe the excited-state dynamics and nonadiabatic processes of molecular systems. AIMS represents nuclear wavefunctions as linear combinations of traveling, coupled Gaussians called trajectory basis functions (TBFs) and uses a spawning algorithm to increase as needed the size of this basis set during nonadiabatic transitions. While the success of AIMS resides in this spawning algorithm, the dramatic increase in TBFs generated by multiple crossings between electronic states can rapidly lead to intractable dynamics. In this Communication, we introduce a new flavor of AIMS, coined ab initio multiple spawning with informed stochastic selections (AIMSWISS), which proposes a parameter-free strategy to beat the growing number of TBFs in an AIMS dynamics while preserving its accurate description of nonadiabatic transitions. The performance of AIMSWISS is validated against the photodynamics of ethylene, cyclopropanone, and fulvene. This technique, built upon the recently developed stochastic-selection AIMS, is intended to serve as a computationally affordable starting point for multiple spawning simulations.
Collapse
Affiliation(s)
- Yorick Lassmann
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Basile F E Curchod
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| |
Collapse
|
41
|
Barbatti M. Velocity Adjustment in Surface Hopping: Ethylene as a Case Study of the Maximum Error Caused by Direction Choice. J Chem Theory Comput 2021; 17:3010-3018. [PMID: 33844922 DOI: 10.1021/acs.jctc.1c00012] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The most common surface hopping dynamics algorithms require velocity adjustment after hopping to ensure total-energy conservation. Based on the semiclassical analysis, this adjustment must be made parallel to the nonadiabatic coupling vector's direction. Nevertheless, this direction is not always known, and the common practice has been to adjust the velocity in either the linear momentum or velocity directions. This paper benchmarks surface hopping dynamics of photoexcited ethylene with velocity adjustment in several directions, including those of the nonadiabatic coupling vector, the momentum, and the energy gradient difference. It is shown that differences in time constants and structural evolution fall within the statistical uncertainty of the method considering up to 500 trajectories in each dynamics set, rendering the three approaches statistically equivalent. For larger ensembles beyond 1000 trajectories, significant differences between the results arise, limiting the validity of adjustment in alternative directions. Other possible adjustment directions (velocity, single-state gradients, angular momentum) are evaluated as well. Given the small size of ethylene, the results reported in this paper should be considered an upper limit for the error caused by the choice of the velocity-adjustment direction on surface hopping dynamics.
Collapse
|
42
|
Shchepanovska D, Shannon RJ, Curchod BFE, Glowacki DR. Nonadiabatic Kinetics in the Intermediate Coupling Regime: Comparing Molecular Dynamics to an Energy-Grained Master Equation. J Phys Chem A 2021; 125:3473-3488. [PMID: 33880919 DOI: 10.1021/acs.jpca.1c01260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We propose and test an extension of the energy-grained master equation (EGME) for treating nonadiabatic (NA) hopping between different potential energy surfaces, which enables us to model the competition between stepwise collisional relaxation and kinetic processes which transfer population between different electronic states of the same spin symmetry. By incorporating Zhu-Nakamura theory into the EGME, we are able to treat NA passages beyond the simple Landau-Zener approximation, along with the corresponding treatments of zero-point energy and tunneling probability. To evaluate the performance of this NA-EGME approach, we carried out detailed studies of the UV photodynamics of the volatile organic compound C6-hydroperoxy aldehyde (C6-HPALD) using on-the-fly ab initio molecular dynamics and trajectory surface hopping. For this multichromophore molecule, we show that the EGME is able to capture important aspects of the dynamics, including kinetic timescales, and diabatic trapping. Such an approach provides a promising and efficient strategy for treating the long-time dynamics of photoexcited molecules in regimes which are difficult to capture using atomistic on-the-fly molecular dynamics.
Collapse
Affiliation(s)
| | - Robin J Shannon
- School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | | | - David R Glowacki
- School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.,Intangible Realities Laboratory, University of Bristol, Bristol BS8 1UB, U.K.,Department of Computer Science, University of Bristol, Bristol BS8 1UB, U.K
| |
Collapse
|
43
|
Heindl M, González L. Validating fewest-switches surface hopping in the presence of laser fields. J Chem Phys 2021; 154:144102. [PMID: 33858152 DOI: 10.1063/5.0044807] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The capability of fewest-switches surface hopping (FSSH) to describe non-adiabatic dynamics under explicit excitation with external fields is evaluated. Different FSSH parameters are benchmarked against multi-configurational time dependent Hartree (MCTDH) reference calculations using SO2 and 2-thiocytosine as model, yet realistic, molecular systems. Qualitatively, FSSH is able to reproduce the trends in the MCTDH dynamics with (also without) an explicit external field; however, no set of FSSH parameters is ideal. The adequate treatment of the overcoherence in FSSH is revealed as the driving factor to improve the description of the excitation process with respect to the MCTDH reference. Here, two corrections were tested: the augmented-FSSH (AFSSH) correction and the energy-based decoherence correction. A dependence on the employed basis is detected in AFSSH, performing better when spin-orbit and external laser field couplings are treated as off-diagonal elements instead of projecting them onto the diagonal of the Hamilton operator. In the presence of an electric field, the excited state dynamics was found to depend strongly on the vector used to rescale the kinetic energy along after a transition between surfaces. For SO2, recurrence of the excited wave packet throughout the duration of the applied laser pulse is observed for laser pulses (>100 fs), resulting in additional interferences missed by FSSH and only visible in variational multi-configurational Gaussian when utilizing a large number of Gaussian basis functions. This feature vanishes when going toward larger molecules, such as 2-thiocytosine, where this effect is barely visible in a laser pulse 200 fs long.
Collapse
Affiliation(s)
- Moritz Heindl
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 17, 1090 Vienna, Austria
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 17, 1090 Vienna, Austria
| |
Collapse
|
44
|
Freixas VM, White AJ, Nelson T, Song H, Makhov DV, Shalashilin D, Fernandez-Alberti S, Tretiak S. Nonadiabatic Excited-State Molecular Dynamics Methodologies: Comparison and Convergence. J Phys Chem Lett 2021; 12:2970-2982. [PMID: 33730495 DOI: 10.1021/acs.jpclett.1c00266] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Direct atomistic simulation of nonadiabatic molecular dynamics is a challenging goal that allows important insights into fundamental physical phenomena. A variety of frameworks, ranging from fully quantum treatment of nuclei to semiclassical and mixed quantum-classical approaches, were developed. These algorithms are then coupled to specific electronic structure techniques. Such diversity and lack of standardized implementation make it difficult to compare the performance of different methodologies when treating realistic systems. Here, we compare three popular methods for large chromophores: Ehrenfest, surface hopping, and multiconfigurational Ehrenfest with ab initio multiple cloning (MCE-AIMC). These approaches are implemented in the NEXMD software, which features a common computational chemistry model. The resulting comparisons reveal the method performance for population relaxation and coherent vibronic dynamics. Finally, we study the numerical convergence of MCE-AIMC algorithms by considering the number of trajectories, cloning thresholds, and Gaussian wavepacket width. Our results provide helpful reference data for selecting an optimal methodology for simulating excited-state molecular dynamics.
Collapse
Affiliation(s)
- Victor M Freixas
- Universidad Nacional de Quilmes, Roque Saénz Peña 352, B1876BXD Bernal, Argentina
| | - Alexander J White
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Tammie Nelson
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Huajing Song
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Dmitry V Makhov
- School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K
- School of Mathematics, University of Bristol, Bristol BS8 1TW, U.K
| | | | | | - Sergei Tretiak
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
45
|
Ibele LM, Lassmann Y, Martínez TJ, Curchod BFE. Comparing (stochastic-selection) ab initio multiple spawning with trajectory surface hopping for the photodynamics of cyclopropanone, fulvene, and dithiane. J Chem Phys 2021; 154:104110. [DOI: 10.1063/5.0045572] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Lea M. Ibele
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Yorick Lassmann
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Todd J. Martínez
- Department of Chemistry, Stanford University, Stanford, California 94305, USA and PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Basile F. E. Curchod
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| |
Collapse
|
46
|
Pieroni C, Marsili E, Lauvergnat D, Agostini F. Relaxation dynamics through a conical intersection: Quantum and quantum-classical studies. J Chem Phys 2021; 154:034104. [PMID: 33499611 DOI: 10.1063/5.0036726] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We study the relaxation process through a conical intersection of a photo-excited retinal chromophore model. The analysis is based on a two-electronic-state two-dimensional Hamiltonian developed by Hahn and Stock [J. Phys. Chem. B 104 1146 (2000)] to reproduce, with a minimal model, the main features of the 11-cis to all-trans isomerization of the retinal of rhodopsin. In particular, we focus on the performance of various trajectory-based schemes to nonadiabatic dynamics, and we compare quantum-classical results to the numerically exact quantum vibronic wavepacket dynamics. The purpose of this work is to investigate, by analyzing electronic and nuclear observables, how the sampling of initial conditions for the trajectories affects the subsequent dynamics.
Collapse
Affiliation(s)
- Carlotta Pieroni
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, 91405 Orsay, France
| | - Emanuele Marsili
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - David Lauvergnat
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, 91405 Orsay, France
| | - Federica Agostini
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, 91405 Orsay, France
| |
Collapse
|
47
|
Tang D, Shen L, Fang WH. Evaluation of mixed quantum-classical molecular dynamics on cis-azobenzene photoisomerization. Phys Chem Chem Phys 2021; 23:13951-13964. [PMID: 34142685 DOI: 10.1039/d1cp01374b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The quantitative prediction of nonadiabatic transitions between different electronic states is important to understand ultrafast processes in photochemistry. A variety of mixed quantum-classical molecular dynamics methods such as surface hopping and Ehrenfest mean-field have been developed. However, how to choose an appropriate one from a wide diversity of dynamics algorithms to study a realistic photochemical process is still unclear. In this work, we implemented 30 combinations of different mixed quantum-classical dynamics methods, including 24 surface hopping models with 8 decoherence corrections and 3 momentum rescaling strategies as well as 6 mean-field models. Then we performed numerical investigations by simulating the photoisomerization of cis-azobenzene combined with on-the-fly electronic structure calculations. Predictions of the S1 lifetime and the quantum yield of the photoproduct using different models are distinct. Surface hopping is more robust than mean-field in our test system. Moreover, the choice of momentum rescaling methods in surface hopping brings more significant changes than decoherence corrections, while a large discrepancy between simulation results with different mean-field algorithms has been observed.
Collapse
Affiliation(s)
- Diandong Tang
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Lin Shen
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
48
|
Choi S, Vaníček J. Which form of the molecular Hamiltonian is the most suitable for simulating the nonadiabatic quantum dynamics at a conical intersection? J Chem Phys 2020; 153:211101. [DOI: 10.1063/5.0033410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Seonghoon Choi
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jiří Vaníček
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|