1
|
Rejc L, Knez D, Molina-Aguirre G, Espargaró A, Kladnik J, Meden A, Blinc L, Lozinšek M, Jansen-van Vuuren RD, Rogan M, Martek BA, Mlakar J, Dremelj A, Petrič A, Gobec S, Sabaté R, Bresjanac M, Pinter B, Košmrlj J. Probing Alzheimer's pathology: Exploring the next generation of FDDNP analogues for amyloid β detection. Biomed Pharmacother 2024; 175:116616. [PMID: 38723516 DOI: 10.1016/j.biopha.2024.116616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 06/03/2024] Open
Abstract
Fluorescent probes are a powerful tool for imaging amyloid β (Aβ) plaques, the hallmark of Alzheimer's disease (AD). Herein, we report the synthesis and comprehensive characterization of 21 novel probes as well as their optical properties and binding affinities to Aβ fibrils. One of these dyes, 1Ae, exhibited several improvements over FDDNP, an established biomarker for Aβ- and Tau-aggregates. First, 1Ae had large Stokes shifts (138-213 nm) in various solvents, thereby reducing self-absorption. With a high quantum yield ratio (φ(dichloromethane/methanol) = 104), 1Ae also ensures minimal background emission in aqueous environments and high sensitivity. In addition, compound 1Ae exhibited low micromolar binding affinity to Aβ fibrils in vitro (Kd = 1.603 µM), while increasing fluorescence emission (106-fold) compared to emission in buffer alone. Importantly, the selective binding of 1Ae to Aβ1-42 fibrils was confirmed by an in cellulo assay, supported by ex vivo fluorescence microscopy of 1Ae on postmortem AD brain sections, allowing unequivocal identification of Aβ plaques. The intermolecular interactions of fluorophores with Aβ were elucidated by docking studies and molecular dynamics simulations. Density functional theory calculations revealed the unique photophysics of these rod-shaped fluorophores, with a twisted intramolecular charge transfer (TICT) excited state. These results provide valuable insights into the future application of such probes as potential diagnostic tools for AD in vitro and ex vivo such as determination of Aβ1-42 in cerebrospinal fluid or blood.
Collapse
Affiliation(s)
- Luka Rejc
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana SI-1000, Slovenia
| | - Damijan Knez
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana SI-1000, Slovenia
| | | | - Alba Espargaró
- Faculty of Pharmacy, Department of Pharmacy, Pharmaceutical Technology and Physical-Chemistry, Section of Physical-Chemistry, and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona 08028, Spain
| | - Jerneja Kladnik
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana SI-1000, Slovenia
| | - Anže Meden
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana SI-1000, Slovenia
| | - Lana Blinc
- Laboratory of Neural Plasticity and Regeneration (LNPR), Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, Ljubljana SI-1000, Slovenia
| | - Matic Lozinšek
- Jožef Stefan Institute, Jamova cesta 39, Ljubljana SI-1000, Slovenia
| | - Ross D Jansen-van Vuuren
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana SI-1000, Slovenia
| | - Matic Rogan
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana SI-1000, Slovenia
| | - Bruno Aleksander Martek
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana SI-1000, Slovenia
| | - Jernej Mlakar
- Faculty of Medicine, Institute of Pathology, University of Ljubljana, Korytkova 2, Ljubljana SI-1000, Slovenia
| | - Ana Dremelj
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana SI-1000, Slovenia
| | - Andrej Petrič
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana SI-1000, Slovenia
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana SI-1000, Slovenia.
| | - Raimon Sabaté
- Faculty of Pharmacy, Department of Pharmacy, Pharmaceutical Technology and Physical-Chemistry, Section of Physical-Chemistry, and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona 08028, Spain.
| | - Mara Bresjanac
- Laboratory of Neural Plasticity and Regeneration (LNPR), Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, Ljubljana SI-1000, Slovenia.
| | - Balazs Pinter
- The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA.
| | - Janez Košmrlj
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana SI-1000, Slovenia.
| |
Collapse
|
2
|
Suzuki R, Chiba K, Tanaka S, Okuyama K. Electronic spectra of jet-cooled 1,4-bis(phenylethynyl)benzene: Strength in π-electron conjugation and two large-amplitude torsional motions. J Chem Phys 2024; 160:024301. [PMID: 38189806 DOI: 10.1063/5.0176162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/30/2023] [Indexed: 01/09/2024] Open
Abstract
To spectroscopically qualify strength in the π-electron conjugation, the electronic spectra of jet-cooled 1,4-bis(phenylethynyl)benzene (BPEB) in the region of the transition to the lowest excited singlet (S1) 1B1u state are measured by the fluorescence excitation and the single-vibronic-level dispersed fluorescence methods. Strength is defined as the difference in potential energies between the planar and perpendicular conformations. BPEB possesses two large-amplitude torsional motions, out-of-phase 24 and in-phase 29 modes. The most stable is the planar conformation, and barrier heights at the perpendicular conformation are coincident in torsional potentials for the two modes. Torsional levels are successively observed up to 19± and 16- quantum levels in the ground state, respectively. Strength is determined to be 293 cm-1 (3.51 kJmol-1) with an accuracy of an error range smaller than 1 cm-1. In the excited state, strength is estimated to be 1549 ± 73 cm-1. Combination levels of two torsional modes are also measured up to high quantum levels. A systematic decrease in frequencies is observed with increasing the quantum number. Quantum-chemistry calculations of B3LYP, CAM-B3PLYP, WB97XD, and M062X with basis sets of aug-cc-pVDZ are performed, where B3LYP theories are carried out with the dispersion correlation. The calculated strength is 1.1-2.1 times larger than observed.
Collapse
Affiliation(s)
- Ryoko Suzuki
- Departments of Chemical Biology and Applied Chemistry, Graduate School of Engineering, Nihon University, Koriyama, Fukushima 963-8642, Japan
| | - Kohei Chiba
- Departments of Chemical Biology and Applied Chemistry, Graduate School of Engineering, Nihon University, Koriyama, Fukushima 963-8642, Japan
| | - Sei'ichi Tanaka
- Departments of Chemical Biology and Applied Chemistry, Graduate School of Engineering, Nihon University, Koriyama, Fukushima 963-8642, Japan
| | - Katsuhiko Okuyama
- Departments of Chemical Biology and Applied Chemistry, College of Engineering, Nihon University, Koriyama, Fukushima 963-8642, Japan
| |
Collapse
|
3
|
Kole GK, Košćak M, Amar A, Majhen D, Božinović K, Brkljaca Z, Ferger M, Michail E, Lorenzen S, Friedrich A, Krummenacher I, Moos M, Braunschweig H, Boucekkine A, Lambert C, Halet J, Piantanida I, Müller‐Buschbaum K, Marder TB. Methyl Viologens of Bis-(4'-Pyridylethynyl)Arenes - Structures, Photophysical and Electrochemical Studies, and their Potential Application in Biology. Chemistry 2022; 28:e202200753. [PMID: 35502627 PMCID: PMC9400870 DOI: 10.1002/chem.202200753] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Indexed: 12/20/2022]
Abstract
A series of bis-(4'-pyridylethynyl)arenes (arene=benzene, tetrafluorobenzene, and anthracene) were synthesized and their bis-N-methylpyridinium compounds were investigated as a class of π-extended methyl viologens. Their structures were determined by single crystal X-ray diffraction, and their photophysical and electrochemical properties (cyclic voltammetry), as well as their interactions with DNA/RNA were investigated. The dications showed bathochromic shifts in emission compared to the neutral compounds. The neutral compounds showed very small Stokes shifts, which are a little larger for the dications. All of the compounds showed very short fluorescence lifetimes (<4 ns). The neutral compound with an anthracene core has a quantum yield of almost unity. With stronger acceptors, the analogous bis-N-methylpyridinium compound showed a larger two-photon absorption cross-section than its neutral precursor. All of the dicationic compounds interact with DNA/RNA; while the compounds with benzene and tetrafluorobenzene cores bind in the grooves, the one with an anthracene core intercalates as a consequence of its large, condensed aromatic linker moiety, and it aggregates within the polynucleotide when in excess over DNA/RNA. Moreover, all cationic compounds showed highly specific CD spectra upon binding to ds-DNA/RNA, attributed to the rare case of forcing the planar, achiral molecule into a chiral rotamer, and negligible toxicity toward human cell lines at ≤10 μM concentrations. The anthracene-analogue exhibited intracellular accumulation within lysosomes, preventing its interaction with cellular DNA/RNA. However, cytotoxicity was evident at 1 μM concentration upon exposure to light, due to singlet oxygen generation within cells. These multi-faceted features, in combination with its two-photon absorption properties, suggest it to be a promising lead compound for development of novel light-activated theranostic agents.
Collapse
Affiliation(s)
- Goutam Kumar Kole
- Institut für Anorganische Chemie, andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Department of ChemistryCollege of Engineering and TechnologySRM Institute of Science and Technology, SRM NagarKattankulathurTamil Nadu603203India
| | | | - Anissa Amar
- Laboratoire de Physique et Chimie QuantiquesUniversité Mouloud MammeriTizi Ouzou15000 Tizi-OuzouAlgeria
| | | | | | | | - Matthias Ferger
- Institut für Anorganische Chemie, andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Evripidis Michail
- Institut für Organische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Sabine Lorenzen
- Institut für Anorganische Chemie, andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Alexandra Friedrich
- Institut für Anorganische Chemie, andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Ivo Krummenacher
- Institut für Anorganische Chemie, andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Michael Moos
- Institut für Organische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Holger Braunschweig
- Institut für Anorganische Chemie, andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Abdou Boucekkine
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, Institut des Sciences Chimiques de Rennes UMR 622635000RennesFrance
| | - Christoph Lambert
- Institut für Organische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Jean‐François Halet
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, Institut des Sciences Chimiques de Rennes UMR 622635000RennesFrance
- CNRS-Saint-Gobain-NIMSIRL 3629Laboratory for Innovative Key Materials and Structures (LINK)National Institute for Materials Science (NIMS)Tsukuba305-0044Japan
| | | | - Klaus Müller‐Buschbaum
- Institut für Anorganische und Analytische ChemieJustus-Liebig-Universität GießenHeinrich-Buff-Ring 1735392GießenGermany
| | - Todd B. Marder
- Institut für Anorganische Chemie, andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
4
|
Brosz M, Michelarakis N, Bunz UHF, Aponte-Santamaría C, Gräter F. Martini 3 coarse-grained force field for poly( para-phenylene ethynylene)s. Phys Chem Chem Phys 2022; 24:9998-10010. [PMID: 35412534 DOI: 10.1039/d1cp04237h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Poly(para-phenylene ethynylene)s, or short PPEs, are a class of conjugated and semi-flexible polymers with a strongly delocalized π electron system and increased chain stiffness. Due to this, PPEs have a wide range of technological applications. Although the material properties of single-chains or mixtures of few PPE chains have been studied in detail, the properties of large assemblies remain to be fully explored. Here, we developed a coarse-grained model for PPEs with the Martini 3 force field to enable computational studies of PPEs in large-scale assembly. We used an optimization geometrical approach to take the shape of the π conjugated backbone into account and also applied an additional angular potential to tune the mechanical bending stiffness of the polymer. Our Martini 3 model reproduces key structural and thermodynamic observables of single PPE chains and mixtures, such as persistence length, density, packing and stacking. We show that chain entanglement increases with the expense of nematic ordering with growing PPE chain length. With the Martini 3 PPE model at hand, we are now able to cover large spatio-temporal scales and thereby to uncover key aspects for the structural organization of PPE bulk systems. The model is also predicted to be of high applicability to investigate out-of-equilibrium behavior of PPEs under mechanical force.
Collapse
Affiliation(s)
- Matthias Brosz
- Heidelberg Institute for Theoretical Studies, Am Schlosswolfsbrunnenweg 35, 69118 Heidelberg, Germany. .,Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Nicholas Michelarakis
- Heidelberg Institute for Theoretical Studies, Am Schlosswolfsbrunnenweg 35, 69118 Heidelberg, Germany.
| | - Uwe H F Bunz
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Camilo Aponte-Santamaría
- Heidelberg Institute for Theoretical Studies, Am Schlosswolfsbrunnenweg 35, 69118 Heidelberg, Germany.
| | - Frauke Gräter
- Heidelberg Institute for Theoretical Studies, Am Schlosswolfsbrunnenweg 35, 69118 Heidelberg, Germany. .,Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| |
Collapse
|
5
|
Tang H, Wang CW, Gu FL, Zhu C. Absorption and fluorescence spectra of conjugated polymers poly(propylene oxide)–poly(phenylene ethynylene) interpreted by Franck–Condon simulation. J PHYS ORG CHEM 2021. [DOI: 10.1002/poc.4261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hao Tang
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry & Environment South China Normal University Guangzhou China
| | - Chen Wen Wang
- Institutes of Molecular Science and Department of Applied Chemistry National Chiao Tung University Hsinchu Taiwan
| | - Feng Long Gu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry & Environment South China Normal University Guangzhou China
| | - Chaoyuan Zhu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry & Environment South China Normal University Guangzhou China
- Institutes of Molecular Science and Department of Applied Chemistry National Chiao Tung University Hsinchu Taiwan
- Department of Applied Chemistry and Center for Emergent Functional Matter Science National Yang Ming Chiao Tung University Hsinchu Taiwan
| |
Collapse
|
6
|
Hodecker M, Kozhemyakin Y, Weigold S, Rominger F, Freudenberg J, Dreuw A, Bunz UHF. A Doubly Bridged Bis(phenylethynyl)benzene: Different from a Twisted Tolan. Chemistry 2020; 26:16990-16993. [PMID: 33017073 PMCID: PMC7839586 DOI: 10.1002/chem.202002552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/01/2020] [Indexed: 11/25/2022]
Abstract
The synthesis of a doubly bridged 1,4‐bis(phenylethynyl)benzene is reported. The target displays photophysical properties, distinctly different from that of its congeners, the singly bridged tolans. Quantum‐chemical calculations suggest a lack of planarization of the bridged bis(phenylethynyl)benzene in the first excited state.
Collapse
Affiliation(s)
- Manuel Hodecker
- Interdiziplinäres Zentrum für Wissenschaftliches Rechnen Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 205 69120 Heidelberg Germany
| | - Yury Kozhemyakin
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Svenja Weigold
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Frank Rominger
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Jan Freudenberg
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Andreas Dreuw
- Interdiziplinäres Zentrum für Wissenschaftliches Rechnen Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 205 69120 Heidelberg Germany
| | - Uwe H. F. Bunz
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| |
Collapse
|