1
|
Qu L, Tsutsumi T, Ono Y, Taketsugu T. Acceleration of Reaction Space Projector Analysis Using Combinatorial Optimization: Application to Organic Chemical Reactions. J Chem Theory Comput 2024; 20:10931-10941. [PMID: 39652513 DOI: 10.1021/acs.jctc.4c01072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
In recent years, automated reaction path search methods have established the concept of a reaction route network. The Reaction Space Projector (ReSPer) visualizes the potential energy hypersurface into a lower-dimensional subspace using principal coordinates. The main time-consuming process in ReSPer is calculating the structural distance matrix, making it impractical for complex organic reaction route networks. We implemented the Alternate Optimization (AO) algorithm, one of the combinatorial optimizations, in ReSPer to reduce computational costs. Evaluations using gold clusters and the Au5 several reaction route networks showed that ReSPer-AO accurately computes distances with lower computational costs. Applying ReSPer-AO to the C5H8O reaction route network clarified dynamic conformation changes in its potential energy landscape. The ReSPer-AO method enables analysis of chemical reactions and dynamic conformations in a low-dimensional reaction space that accurately represents hydrocarbon reaction route networks.
Collapse
Affiliation(s)
- Lihao Qu
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Takuro Tsutsumi
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yuriko Ono
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| | - Tetsuya Taketsugu
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
2
|
Zhu Y, Peng J, Xu C, Lan Z. Unsupervised Machine Learning in the Analysis of Nonadiabatic Molecular Dynamics Simulation. J Phys Chem Lett 2024; 15:9601-9619. [PMID: 39270134 DOI: 10.1021/acs.jpclett.4c01751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
The all-atomic full-dimensional-level simulations of nonadiabatic molecular dynamics (NAMD) in large realistic systems has received high research interest in recent years. However, such NAMD simulations normally generate an enormous amount of time-dependent high-dimensional data, leading to a significant challenge in result analyses. Based on unsupervised machine learning (ML) methods, considerable efforts were devoted to developing novel and easy-to-use analysis tools for the identification of photoinduced reaction channels and the comprehensive understanding of complicated molecular motions in NAMD simulations. Here, we tried to survey recent advances in this field, particularly to focus on how to use unsupervised ML methods to analyze the trajectory-based NAMD simulation results. Our purpose is to offer a comprehensive discussion on several essential components of this analysis protocol, including the selection of ML methods, the construction of molecular descriptors, the establishment of analytical frameworks, their advantages and limitations, and persistent challenges.
Collapse
Affiliation(s)
- Yifei Zhu
- MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, P. R. China
| | - Jiawei Peng
- MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, P. R. China
| | - Chao Xu
- MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, P. R. China
| | - Zhenggang Lan
- MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, P. R. China
| |
Collapse
|
3
|
Li R, Gao T, Zhang P, Li A. Non-IRC Mechanism of Bimolecular Reactions with Submerged Barriers: A Case Study of Si + + H 2O Reaction. J Phys Chem A 2024. [PMID: 38500343 DOI: 10.1021/acs.jpca.4c00787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Chemical reactions with submerged barriers may feature interesting dynamic behaviors that are distinct from those with substantial barriers or those entirely dominated by capture. The Si+ + H2O reaction is a prototypical example, involving even two submerged saddle points along the reaction path: one for the direct dissociation of H (H-dissociation SP) and another for H migration from the O-side to the Si-side (H-migration SP). We investigated the intricacies of this process by employing quasi-classical trajectory calculations on an accurate, full-dimensional ab initio potential energy surface. Through careful trajectory analysis, an interesting nonintrinsic reaction coordinate mechanism was found to play an important role in producing SiOH+ and H. This new pathway is featured as that the H atoms do not form HSiOH+ complexes along the minimum-energy path but directly dissociate into the products after passing through the H-migration SP. Furthermore, based on artificially scaled potential energy surfaces (PESs), the impact of barrier height on the reaction is also explored. This work provides new insights into the dynamics of the Si+ + H2O reaction and enriches our understanding of reactions with submerged barriers.
Collapse
Affiliation(s)
- Ruilin Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710127 Xi'an, P. R. China
| | - Tengyu Gao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710127 Xi'an, P. R. China
| | - Ping Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710127 Xi'an, P. R. China
| | - Anyang Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710127 Xi'an, P. R. China
| |
Collapse
|
4
|
Staub R, Gantzer P, Harabuchi Y, Maeda S, Varnek A. Challenges for Kinetics Predictions via Neural Network Potentials: A Wilkinson's Catalyst Case. Molecules 2023; 28:molecules28114477. [PMID: 37298952 DOI: 10.3390/molecules28114477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Ab initio kinetic studies are important to understand and design novel chemical reactions. While the Artificial Force Induced Reaction (AFIR) method provides a convenient and efficient framework for kinetic studies, accurate explorations of reaction path networks incur high computational costs. In this article, we are investigating the applicability of Neural Network Potentials (NNP) to accelerate such studies. For this purpose, we are reporting a novel theoretical study of ethylene hydrogenation with a transition metal complex inspired by Wilkinson's catalyst, using the AFIR method. The resulting reaction path network was analyzed by the Generative Topographic Mapping method. The network's geometries were then used to train a state-of-the-art NNP model, to replace expensive ab initio calculations with fast NNP predictions during the search. This procedure was applied to run the first NNP-powered reaction path network exploration using the AFIR method. We discovered that such explorations are particularly challenging for general purpose NNP models, and we identified the underlying limitations. In addition, we are proposing to overcome these challenges by complementing NNP models with fast semiempirical predictions. The proposed solution offers a generally applicable framework, laying the foundations to further accelerate ab initio kinetic studies with Machine Learning Force Fields, and ultimately explore larger systems that are currently inaccessible.
Collapse
Affiliation(s)
- Ruben Staub
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo 001-0021, Japan
| | - Philippe Gantzer
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo 001-0021, Japan
| | - Yu Harabuchi
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo 001-0021, Japan
- Japan Science and Technology Agency (JST), ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0810, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| | - Satoshi Maeda
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo 001-0021, Japan
- Japan Science and Technology Agency (JST), ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0810, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0810, Japan
- Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Alexandre Varnek
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo 001-0021, Japan
- Laboratory of Chemoinformatics, UMR 7140, CNRS, University of Strasbourg, 67081 Strasbourg, France
| |
Collapse
|
5
|
Tsutsumi T, Ono Y, Taketsugu T. Multi-state Energy Landscape for Photoreaction of Stilbene and Dimethyl-stilbene. J Chem Theory Comput 2022; 18:7483-7495. [PMID: 36351076 DOI: 10.1021/acs.jctc.2c00560] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have recently developed the reaction space projector (ReSPer) method, which constructs a reduced-dimensionality reaction space uniquely determined from reference reaction paths for a polyatomic molecular system and projects classical trajectories into the same reaction space. In this paper, we extend ReSPer to the analysis of photoreaction dynamics and relaxation processes of stilbene and present the concept of a "multi-state energy landscape," incorporating the ground- and excited-state reaction subspaces. The multi-state energy landscape successfully explains the previously established photoreaction processes of cis-stilbene, such as the cis-trans photoisomerization and photocyclization. In addition, we discuss the difference in the excited-state reaction dynamics between stilbene and 1,1'-dimethyl stilbene based on a common reaction subspace determined from the framework part of reference structures with different number of atoms. This approach allows us to target any molecule with a common framework, greatly expanding the applicability of the ReSPer analysis. The multi-state energy landscape provides fruitful insight into photochemical reactions, exploring the excited- and ground-state potential energy surfaces, as well as comprehensive reaction processes with nonradiative transitions between adiabatic states, within the stage of a reduced-dimensionality reaction space.
Collapse
Affiliation(s)
- Takuro Tsutsumi
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo060-0810, Japan.,L-Station, Creative Research Institution (CRI), Hokkaido University, Sapporo060-0812, Japan
| | - Yuriko Ono
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo001-0021, Japan
| | - Tetsuya Taketsugu
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo060-0810, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo001-0021, Japan
| |
Collapse
|
6
|
Zhu Y, Peng J, Kang X, Xu C, Lan Z. The principal component analysis of the ring deformation in the nonadiabatic surface hopping dynamics. Phys Chem Chem Phys 2022; 24:24362-24382. [PMID: 36178471 DOI: 10.1039/d2cp03323b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The analysis of the leading active molecular motions in the on-the-fly trajectory surface hopping simulation provides the essential information to understand the geometric evolution in nonadiabatic dynamics. When the ring deformation is involved, the identification of the key active coordinates becomes challenging. A "hierarchical" protocol based on the dimensionality reduction and clustering approaches is proposed for the automatic analysis of the ring deformation in the nonadiabatic molecular dynamics. The representative system keto isocytosine is taken as the prototype to illustrate this protocol. The results indicate that the current hierarchical analysis protocol is a powerful way to clearly clarify both the major and minor active molecular motions of the ring distortion in nonadiabatic dynamics.
Collapse
Affiliation(s)
- Yifei Zhu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, P. R. China. .,MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Jiawei Peng
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, P. R. China.,School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Xu Kang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, P. R. China. .,MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Chao Xu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, P. R. China. .,MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Zhenggang Lan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, P. R. China. .,MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| |
Collapse
|
7
|
Tsutsumi T, Ono Y, Taketsugu T. Reaction Space Projector (ReSPer) for Visualizing Dynamic Reaction Routes Based on Reduced-Dimension Space. Top Curr Chem (Cham) 2022; 380:19. [PMID: 35266073 DOI: 10.1007/s41061-022-00377-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/21/2022] [Indexed: 11/26/2022]
Abstract
To analyze chemical reaction dynamics based on a reaction path network, we have developed the "Reaction Space Projector" (ReSPer) method with the aid of the dimensionality reduction method. This program has two functions: the construction of a reduced-dimensionality reaction space from a molecular structure dataset, and the projection of dynamic trajectories into the low-dimensional reaction space. In this paper, we apply ReSPer to isomerization and bifurcation reactions of the Au5 cluster and succeed in analyzing dynamic reaction routes involved in multiple elementary reaction processes, constructing complicated networks (called "closed islands") of nuclear permutation-inversion (NPI) isomerization reactions, and elucidating dynamic behaviors in bifurcation reactions with reference to bundles of trajectories. Interestingly, in the second application, we find a correspondence between the contribution ratios in the ability to visualize and the symmetry of the morphology of closed islands. In addition, the third application suggests the existence of boundaries that determine the selectivity in bifurcation reactions, which was discussed in the phase space. The ReSPer program is a versatile and robust tool to clarify dynamic reaction mechanisms based on the reduced-dimensionality reaction space without prior knowledge of target reactions.
Collapse
Affiliation(s)
- Takuro Tsutsumi
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Yuriko Ono
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, 001-0021, Japan
| | - Tetsuya Taketsugu
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, 001-0021, Japan.
| |
Collapse
|
8
|
Tsutsumi T, Ono Y, Taketsugu T. Visualization of reaction route map and dynamical trajectory in reduced dimension. Chem Commun (Camb) 2021; 57:11734-11750. [PMID: 34642706 DOI: 10.1039/d1cc04667e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the quantum chemical approach, chemical reaction mechanisms are investigated based on a potential energy surface (PES). Automated reaction path search methods enable us to construct a global reaction route map containing multiple reaction paths corresponding to a series of elementary reaction processes. The on-the-fly molecular dynamics (MD) method provides a classical trajectory exploring the full-dimensional PES based on electronic structure calculations. We have developed two reaction analysis methods, the on-the-fly trajectory mapping method and the reaction space projector (ReSPer) method, by introducing a structural similarity to a pair of geometric structures and revealed dynamic aspects affecting chemical reaction mechanisms. In this review, we will present the details of these analysis methods and discuss the dynamics effects of reaction path curvature and reaction path bifurcation with applications to the CH3OH + OH- collision reaction and the Au5 cluster branching and isomerization reactions.
Collapse
Affiliation(s)
- Takuro Tsutsumi
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| | - Yuriko Ono
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| | - Tetsuya Taketsugu
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan. .,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
9
|
Shi W, Wang K, Zhang P, Yu L, Li A. Mode-specific dynamics in multichannel reaction NH + + H 2. Phys Chem Chem Phys 2021; 23:20352-20358. [PMID: 34490857 DOI: 10.1039/d1cp02603h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The vibrational- and rotational-mode specificity of the multichannel NH+ + H2 reaction is studied on a recently constructed ab initio-based global potential energy surface using an initial state selected quasi-classical trajectory method, and the trajectories are analyzed using an isometric feature mapping and k-means approach. All excitation modes promote two reactions (R1: NH'+ + H2 → NH+ + HH' and R4: NH'+ + H2 → NH2+ + H') where both NH and HH bonds are broken, but reduce the reactivity of the proton-transfer reaction R2 (NH'+ + H2 → N + H'H2+) at low collision energies. For the hydrogen-transfer reaction R3 (NH'+ + H2 → HNH'+ + H), the rotational excitation of NH+ enhances the reactivity remarkably, while its vibrational excitation has an inhibiting effect on the reaction. The trajectory analyses show that the vibrational and rotational excitations of NH+ make R3 tend to go over a submerged saddle point instead of extracting hydrogen atoms directly. On the other hand, the motions of the H2 reactant facilitate the enhancement of the reactivity but they do not affect the mechanism of R3. In addition, the results suggest that the coupling of the isometric feature mapping and the k-means approach in the trajectory analysis is an appropriate tool for reaction-dynamics studies.
Collapse
Affiliation(s)
- Weiliang Shi
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China.
| | - Kun Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China.
| | - Ping Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China.
| | - Le Yu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China.
| | - Anyang Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China.
| |
Collapse
|
10
|
Lambros E, Dasgupta S, Palos E, Swee S, Hu J, Paesani F. General Many-Body Framework for Data-Driven Potentials with Arbitrary Quantum Mechanical Accuracy: Water as a Case Study. J Chem Theory Comput 2021; 17:5635-5650. [PMID: 34370954 DOI: 10.1021/acs.jctc.1c00541] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a general framework for the development of data-driven many-body (MB) potential energy functions (MB-QM PEFs) that represent the interactions between small molecules at an arbitrary quantum-mechanical (QM) level of theory. As a demonstration, a family of MB-QM PEFs for water is rigorously derived from density functionals belonging to different rungs across Jacob's ladder of approximations within density functional theory (MB-DFT) and from Møller-Plesset perturbation theory (MB-MP2). Through a systematic analysis of individual MB contributions to the interaction energies of water clusters, we demonstrate that all MB-QM PEFs preserve the same accuracy as the corresponding ab initio calculations, with the exception of those derived from density functionals within the generalized gradient approximation (GGA). The differences between the DFT and MB-DFT results are traced back to density-driven errors that prevent GGA functionals from accurately representing the underlying molecular interactions for different cluster sizes and hydrogen-bonding arrangements. We show that this shortcoming may be overcome, within the MB formalism, by using density-corrected functionals (DC-DFT) that provide a more consistent representation of each individual MB contribution. This is demonstrated through the development of a MB-DFT PEF derived from DC-PBE-D3 data, which more accurately reproduce the corresponding ab initio results.
Collapse
Affiliation(s)
- Eleftherios Lambros
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Saswata Dasgupta
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Etienne Palos
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Steven Swee
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Jie Hu
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States.,Materials Science and Engineering, University of California San Diego, La Jolla, California 92093, United States.,San Diego Supercomputer Center, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
11
|
Peng J, Xie Y, Hu D, Lan Z. Analysis of bath motion in MM-SQC dynamics via dimensionality reduction approach: Principal component analysis. J Chem Phys 2021; 154:094122. [PMID: 33685149 DOI: 10.1063/5.0039743] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The system-plus-bath model is an important tool to understand the nonadiabatic dynamics of large molecular systems. Understanding the collective motion of a large number of bath modes is essential for revealing their key roles in the overall dynamics. Here, we applied principal component analysis (PCA) to investigate the bath motion in the basis of a large dataset generated from the symmetrical quasi-classical dynamics method based on the Meyer-Miller mapping Hamiltonian nonadiabatic dynamics for the excited-state energy transfer in the Frenkel-exciton model. The PCA method clearly elucidated that two types of bath modes, which either display strong vibronic coupling or have frequencies close to that of the electronic transition, are important to the nonadiabatic dynamics. These observations were fully consistent with the physical insights. The conclusions were based on the PCA of the trajectory data and did not involve significant pre-defined physical knowledge. The results show that the PCA approach, which is one of the simplest unsupervised machine learning dimensionality reduction methods, is a powerful one for analyzing complicated nonadiabatic dynamics in the condensed phase with many degrees of freedom.
Collapse
Affiliation(s)
- Jiawei Peng
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Yu Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Deping Hu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Zhenggang Lan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
12
|
Manzhos S, Carrington T. Neural Network Potential Energy Surfaces for Small Molecules and Reactions. Chem Rev 2020; 121:10187-10217. [PMID: 33021368 DOI: 10.1021/acs.chemrev.0c00665] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We review progress in neural network (NN)-based methods for the construction of interatomic potentials from discrete samples (such as ab initio energies) for applications in classical and quantum dynamics including reaction dynamics and computational spectroscopy. The main focus is on methods for building molecular potential energy surfaces (PES) in internal coordinates that explicitly include all many-body contributions, even though some of the methods we review limit the degree of coupling, due either to a desire to limit computational cost or to limited data. Explicit and direct treatment of all many-body contributions is only practical for sufficiently small molecules, which are therefore our primary focus. This includes small molecules on surfaces. We consider direct, single NN PES fitting as well as more complex methods that impose structure (such as a multibody representation) on the PES function, either through the architecture of one NN or by using multiple NNs. We show how NNs are effective in building representations with low-dimensional functions including dimensionality reduction. We consider NN-based approaches to build PESs in the sums-of-product form important for quantum dynamics, ways to treat symmetry, and issues related to sampling data distributions and the relation between PES errors and errors in observables. We highlight combinations of NNs with other ideas such as permutationally invariant polynomials or sums of environment-dependent atomic contributions, which have recently emerged as powerful tools for building highly accurate PESs for relatively large molecular and reactive systems.
Collapse
Affiliation(s)
- Sergei Manzhos
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, 1650, Boulevard Lionel-Boulet, Varennes, Québec City, Québec J3X 1S2, Canada
| | - Tucker Carrington
- Chemistry Department, Queen's University, Kingston Ontario K7L 3N6, Canada
| |
Collapse
|