1
|
Ariyarathna IR. Wavefunction theory and density functional theory analysis of ground and excited electronic states of TaB and WB. Phys Chem Chem Phys 2024; 26:22858-22869. [PMID: 39109413 DOI: 10.1039/d4cp02202e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Several low-lying electronic states of TaB and WB molecules were studied using ab initio multireference configuration interaction (MRCI), Davidson corrected MRCI (MRCI+Q), and coupled cluster singles doubles and perturbative triples [CCSD(T)] methods. Their full potential energy curves (PECs), equilibrium electron configurations, equilibrium bond distances (res), dissociation energies (Des), excitation energies (Tes), harmonic vibrational frequencies (ωes), and anharmonicities (ωexes) are reported. The MRCI dipole moment curves (DMCs) of the first 5 electronic states of both TaB and WB are also reported and the equilibrium dipole moment (μ) values are compared with the CCSD(T) μ values. The most stable 13Π (1σ22σ23σ11π3) and 15Δ (1σ22σ23σ11π21δ1) electronic states of TaB lie close in energy with ∼62 kcal mol-1De with respect to the Ta(4F) + B(2P) asymptote. However, spin-orbit coupling effects make the 15Δ0+ state the true ground state of TaB. The ground electronic state of WB (16Π) has the 1σ22σ13σ11π31δ2 electron configuration and is followed by the excited 16Σ+ and 14Δ states. Finally, the MRCI De, re, ωe, and ωexe values of the 13Π state of TaB and 16Π and 14Δ states of WB are used to assess the density functional theory (DFT) errors on a series of exchange-correlation functionals that span multiple-rungs of the Jacob's ladder of density functional approximations (DFA).
Collapse
Affiliation(s)
- Isuru R Ariyarathna
- Physics and Chemistry of Materials (T-1), Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| |
Collapse
|
2
|
Ariyarathna IR. Ab initio electronic structure analysis of ground and excited states of HfN 0,. Phys Chem Chem Phys 2024; 26:21099-21109. [PMID: 39058264 DOI: 10.1039/d4cp01847h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
High-level ab initio electronic structure analysis of third-row transition metal (TM)-based diatomic species is challenging and has been perpetually lagging. In this work, fourteen and eighteen electronic states of HfN and HfN+ respectively are studied, employing multireference configuration interaction (MRCI) and coupled cluster singles doubles and perturbative triples [CCSD(T)] theories under larger correlation-consistent basis sets. Their potential energy curves (PECs), energetics, and spectroscopic parameters are reported. Core electron correlation effects on their properties are also investigated. Chemical bonding patterns of several low-lying electronic states are introduced based on the equilibrium electron configurations. The ground state of HfN (X2Σ+) has the 1σ22σ23σ11π4 electronic configuration, and the ionization of the 3σ1 electron produces the ground state of HfN+ (X1Σ+). Ground states of both HfN and HfN+ are triple bonded in nature and bear 124.86 and 109.10 kcal mol-1 binding energies with respect to their ground state fragments. The findings of this work agree well with the limited experimental literature available and provide useful reference values for future experimental analysis of HfN and HfN+.
Collapse
Affiliation(s)
- Isuru R Ariyarathna
- Physics and Chemistry of Materials (T-1), Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| |
Collapse
|
3
|
Androutsopoulos A, Sader S, Miliordos E. Potential of Molecular Catalysts with Electron-Rich Transition Metal Centers for Addressing Long-Standing Chemistry Enigmas. J Phys Chem A 2024; 128:4401-4411. [PMID: 38797970 DOI: 10.1021/acs.jpca.4c01800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Molecular complexes with electron-rich metal centers are highlighted as potential catalysts for the following five important chemical transformations: selective conversion of methane to methanol, capture and utilization of carbon dioxide, fixation of molecular nitrogen, water splitting, and recycling of perfluorochemicals. Our initial focus lies on negatively charged metal centers and ligands that can stabilize anionic metal atoms. Catalysts with electron-rich metal atoms (CERMAs) can sustain catalytic cycles with a "ping-pong" mechanism, where one or more electrons are transferred from the metal center to the substrate and back. The donated electrons can activate the chemical bonds of the substrate by populating its antibonding orbitals. At the last step of the catalytic cycle, the electrons return to the metal and the product interacts only weakly with the formed anion, which enables the solvent molecules to remove the product fast from the catalytic cycle and prevent subsequent unfavorable reactions. This process resembles electrocatalysis, but the metal serves as both an anode and a cathode (molecular electrocatalysis). We also analyze the usage of CERMAs as the base of Frustrated Lewis pairs proposing a new type of bimetallic catalysts. This Featured Article aspires to initiate systematic experimental and theoretical studies on CERMAs and their reactivity, the potential of which has probably been underestimated in the literature.
Collapse
Affiliation(s)
| | - Safaa Sader
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | | |
Collapse
|
4
|
da Silva Santos M, Medel R, Flach M, Ablyasova OS, Timm M, von Issendorff B, Hirsch K, Zamudio-Bayer V, Riedel S, Lau JT. Exposing the Oxygen-Centered Radical Character of the Tetraoxido Ruthenium(VIII) Cation [RuO 4 ] . Chemphyschem 2023; 24:e202300390. [PMID: 37589334 DOI: 10.1002/cphc.202300390] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 08/18/2023]
Abstract
The tetraoxido ruthenium(VIII) radical cation, [RuO4 ]+ , should be a strong oxidizing agent, but has been difficult to produce and investigate so far. In our X-ray absorption spectroscopy study, in combination with quantum-chemical calculations, we show that [RuO4 ]+ , produced via oxidation of ruthenium cations by ozone in the gas phase, forms the oxygen-centered radical ground state. The oxygen-centered radical character of [RuO4 ]+ is identified by the chemical shift at the ruthenium M3 edge, indicative of ruthenium(VIII), and by the presence of a characteristic low-energy transition at the oxygen K edge, involving an oxygen-centered singly-occupied molecular orbital, which is suppressed when the oxygen-centered radical is quenched by hydrogenation of [RuO4 ]+ to the closed-shell [RuO4 H]+ ion. Hydrogen-atom abstraction from methane is calculated to be only slightly less exothermic for [RuO4 ]+ than for [OsO4 ]+ .
Collapse
Affiliation(s)
- Mayara da Silva Santos
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104, Freiburg, Germany
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489, Berlin, Germany
| | - Robert Medel
- Institut für Chemie und Biochemie - Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34/36, 14195, Berlin, Germany
| | - Max Flach
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104, Freiburg, Germany
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489, Berlin, Germany
| | - Olesya S Ablyasova
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104, Freiburg, Germany
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489, Berlin, Germany
| | - Martin Timm
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489, Berlin, Germany
| | - Bernd von Issendorff
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104, Freiburg, Germany
| | - Konstantin Hirsch
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489, Berlin, Germany
| | - Vicente Zamudio-Bayer
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489, Berlin, Germany
| | - Sebastian Riedel
- Institut für Chemie und Biochemie - Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34/36, 14195, Berlin, Germany
| | - J Tobias Lau
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104, Freiburg, Germany
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489, Berlin, Germany
| |
Collapse
|
5
|
Claveau EE, Sader S, Jackson BA, Khan SN, Miliordos E. Transition metal oxide complexes as molecular catalysts for selective methane to methanol transformation: any prospects or time to retire? Phys Chem Chem Phys 2023; 25:5313-5326. [PMID: 36723253 DOI: 10.1039/d2cp05480a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Transition metal oxides have been extensively used in the literature for the conversion of methane to methanol. Despite the progress made over the past decades, no method with satisfactory performance or economic viability has been detected. The main bottleneck is that the produced methanol oxidizes further due to its weaker C-H bond than that of methane. Every improvement in the efficiency of a catalyst to activate methane leads to reduction of the selectivity towards methanol. Is it therefore prudent to keep studying (both theoretically and experimentally) metal oxides as catalysts for the quantitative conversion of methane to methanol? This perspective focuses on molecular metal oxide complexes and suggests strategies to bypass the current bottlenecks with higher weight on the computational chemistry side. We first discuss the electronic structure of metal oxides, followed by assessing the role of the ligands in the reactivity of the catalysts. For better selectivity, we propose that metal oxide anionic complexes should be explored further, while hydrophylic cavities in the vicinity of the metal oxide can perturb the transition-state structure for methanol increasing appreciably the activation barrier for methanol. We also emphasize that computational studies should target the activation reaction of methanol (and not only methane), the study of complete catalytic cycles (including the recombination and oxidation steps), and the use of molecular oxygen as an oxidant. The titled chemical conversion is an excellent challenge for theory and we believe that computational studies should lead the field in the future. It is finally shown that bottom-up approaches offer a systematic way for exploration of the chemical space and should still be applied in parallel with the recently popular machine learning techniques. To answer the question of the title, we believe that metal oxides should still be considered provided that we change our focus and perform more systematic investigations on the activation of methanol.
Collapse
Affiliation(s)
- Emily E Claveau
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
| | - Safaa Sader
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
| | - Benjamin A Jackson
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
| | - Shahriar N Khan
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
| | - Evangelos Miliordos
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
| |
Collapse
|
6
|
da Silva Santos M, Stüker T, Flach M, Ablyasova OS, Timm M, von Issendorff B, Hirsch K, Zamudio‐Bayer V, Riedel S, Lau JT. The Highest Oxidation State of Rhodium: Rhodium(VII) in [RhO 3 ] . Angew Chem Int Ed Engl 2022; 61:e202207688. [PMID: 35818987 PMCID: PMC9544489 DOI: 10.1002/anie.202207688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Indexed: 11/23/2022]
Abstract
Although the highest possible oxidation states of all transition elements are rare, they are not only of fundamental interest but also relevant as potentially strong oxidizing agents. In general, the highest oxidation states are found in the electron-rich late transition elements of groups 7-9 of the periodic table. Rhodium is the first element of the 4d transition metal series for which the highest known oxidation state does not equal its group number of 9, but reaches only a significantly lower value of +6 in exceptional cases. Higher oxidation states of rhodium have remained elusive so far. In a combined mass spectrometry, X-ray absorption spectroscopy, and quantum-chemical study of gas-phaseR h O n + (n=1-4), we identifyR h O 3 + as the1 A 1 ' trioxidorhodium(VII) cation, the first chemical species to contain rhodium in the +7 oxidation state, which is the third-highest oxidation state experimentally verified among all elements in the periodic table.
Collapse
Affiliation(s)
- Mayara da Silva Santos
- Physikalisches InstitutAlbert-Ludwigs-Universität FreiburgHermann-Herder-Straße 379104FreiburgGermany
- Abteilung für Hochempfindliche RöntgenspektroskopieHelmholtz-Zentrum Berlin für Materialien und EnergieAlbert-Einstein-Straße 1512489BerlinGermany
| | - Tony Stüker
- Institut für Chemie und Biochemie–Anorganische ChemieFreie Universität BerlinFabeckstraße 34/3614195BerlinGermany
| | - Max Flach
- Physikalisches InstitutAlbert-Ludwigs-Universität FreiburgHermann-Herder-Straße 379104FreiburgGermany
- Abteilung für Hochempfindliche RöntgenspektroskopieHelmholtz-Zentrum Berlin für Materialien und EnergieAlbert-Einstein-Straße 1512489BerlinGermany
| | - Olesya S. Ablyasova
- Physikalisches InstitutAlbert-Ludwigs-Universität FreiburgHermann-Herder-Straße 379104FreiburgGermany
- Abteilung für Hochempfindliche RöntgenspektroskopieHelmholtz-Zentrum Berlin für Materialien und EnergieAlbert-Einstein-Straße 1512489BerlinGermany
| | - Martin Timm
- Abteilung für Hochempfindliche RöntgenspektroskopieHelmholtz-Zentrum Berlin für Materialien und EnergieAlbert-Einstein-Straße 1512489BerlinGermany
| | - Bernd von Issendorff
- Physikalisches InstitutAlbert-Ludwigs-Universität FreiburgHermann-Herder-Straße 379104FreiburgGermany
| | - Konstantin Hirsch
- Abteilung für Hochempfindliche RöntgenspektroskopieHelmholtz-Zentrum Berlin für Materialien und EnergieAlbert-Einstein-Straße 1512489BerlinGermany
| | - Vicente Zamudio‐Bayer
- Abteilung für Hochempfindliche RöntgenspektroskopieHelmholtz-Zentrum Berlin für Materialien und EnergieAlbert-Einstein-Straße 1512489BerlinGermany
| | - Sebastian Riedel
- Institut für Chemie und Biochemie–Anorganische ChemieFreie Universität BerlinFabeckstraße 34/3614195BerlinGermany
| | - J. Tobias Lau
- Physikalisches InstitutAlbert-Ludwigs-Universität FreiburgHermann-Herder-Straße 379104FreiburgGermany
- Abteilung für Hochempfindliche RöntgenspektroskopieHelmholtz-Zentrum Berlin für Materialien und EnergieAlbert-Einstein-Straße 1512489BerlinGermany
| |
Collapse
|
7
|
da Silva Santos M, Stüker T, Flach M, Ablyasova OS, Timm M, von Issendorff B, Hirsch K, Zamudio-Bayer V, Riedel S, Lau JT. The Highest Oxidation State of Rhodium: Rhodium(VII) in [RhO3]+. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mayara da Silva Santos
- Helmholtz-Zentrum Berlin für Materialien und Energie Physics Albert-Eistein-Str. 15 12489 Berlin GERMANY
| | - Tony Stüker
- Freie Universitat Berlin Institut für Chemie und Biochemie – Anorganische Chemie Fabeckstraße 34/36 14195 Berlin GERMANY
| | - Max Flach
- Helmholtz-Zentrum Berlin fur Materialien und Energie GmbH Abteilung für Hochempfindliche Röntgenspektroskopie Albert-Einstein-Straße 15 12489 Berlin GERMANY
| | - Olesya S. Ablyasova
- Helmholtz-Zentrum Berlin fur Materialien und Energie GmbH Abteilung für Hochempfindliche Röntgenspektroskopie Albert-Einstein-Straße 15 12489 Berlin GERMANY
| | - Martin Timm
- Helmholtz-Zentrum Berlin fur Materialien und Energie GmbH Abteilung für Hochempfindliche Röntgenspektroskopie Albert-Einstein-Straße 15 12489 Berlin GERMANY
| | - Bernd von Issendorff
- Albert-Ludwigs-Universitat Freiburg Physikalisches Institut Hermann-Herder-Straße 3 79104 Freiburg GERMANY
| | - Konstantin Hirsch
- Helmholtz-Zentrum Berlin fur Materialien und Energie GmbH Abteilung für Hochempfindliche Röntgenspektroskopie Albert-Einstein-Straße 15 12489 Berlin GERMANY
| | - Vicente Zamudio-Bayer
- Helmholtz-Zentrum Berlin fur Materialien und Energie GmbH Abteilung für Hochempfindliche Röntgenspektroskopie 12489 Berlin GERMANY
| | - Sebastian Riedel
- Freie Universitat Berlin Institut für Chemie und Biochemie – Anorganische Chemie Fabeckstraße 34/36 14195 Berlin GERMANY
| | - J. Tobias Lau
- Helmholtz-Zentrum Berlin fur Materialien und Energie GmbH Abteilung für Hochempfindliche Röntgenspektroskopie Albert-Einstein-Straße 15 12489 Berlin GERMANY
| |
Collapse
|
8
|
Khan SN, Miliordos E. Electronic Structure of RhO 2+, Its Ammoniated Complexes (NH 3) 1-5RhO 2+, and Mechanistic Exploration of CH 4 Activation by Them. Inorg Chem 2021; 60:16111-16119. [PMID: 34637614 DOI: 10.1021/acs.inorgchem.1c01447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
High-level electronic structure calculations are initially performed to investigate the electronic structure of RhO2+. The construction of potential energy curves for the ground and low-lying excited states allowed the calculation of spectroscopic constants, including harmonic and anharmonic vibrational frequencies, bond lengths, spin-orbit constants, and excitation energies. The equilibrium electronic configurations were used for the interpretation of the chemical bonding. We further monitored how the Rh-O bonding scheme changes with the gradual addition of ammonia ligands. The nature of this bond remains unaffected up to four ammonia ligands but adopts a different electronic configuration in the pseudo-octahedral geometry of (NH3)5RhO2+. This has consequences in the activation mechanism of the C-H bond of methane by these complexes, especially (NH3)4RhO2+. We show that the [2 + 2] mechanism in the (NH3)4RhO2+ case has a very low energy barrier comparable to that of a radical mechanism. We also demonstrate that methane can coordinate to the metal in a similar fashion to ammonia and that knowledge of the electronic structure of the pure ammonia complexes provides qualitative insights into the optimal reaction mechanism.
Collapse
Affiliation(s)
- Shahriar N Khan
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312, United States
| | - Evangelos Miliordos
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312, United States
| |
Collapse
|
9
|
Ariyarathna IR, Miliordos E. Radical abstraction vs. oxidative addition mechanisms for the activation of the S -H, O -H, and C -H bonds using early transition metal oxides. Phys Chem Chem Phys 2021; 23:1437-1442. [PMID: 33393944 DOI: 10.1039/d0cp05513a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quantum chemical calculations are performed to study the S-H, O-H, and C-H bond activation of H2S, H2O, and CH4 by bare and ligated ZrO+ and NbO+ units. These representative oxides bear low energy oxo and higher energy oxyl units. S-H and C-H bonds are readily activated by metal oxyl states (radical mechanism), but the O-H bond is harder to activate with either the oxyl or oxo states. Our results suggest that known practices for the C-H bond activation can be applied to S-H, but not to O-H bonds. The identified trends are rationalized in terms of the HS-H, HO-H, and H3C-H dissociation energies to the homolytic or heterolytic fragments. We also found that these dissociation energies drop to about half after coordination of H2S or H2O to the metal oxide unit. In addition, chlorine ligands are shown to stabilize the higher energy oxyl states of the transition metal oxygen unit enhancing the reactivity of the formed complexes.
Collapse
Affiliation(s)
- Isuru R Ariyarathna
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
| | - Evangelos Miliordos
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
| |
Collapse
|