1
|
Dereka B, Maroli N, Poronik YM, Gryko DT, Kananenka AA. Excited-state symmetry breaking is an ultrasensitive tool for probing microscopic electric fields. Chem Sci 2024:d4sc04797d. [PMID: 39220161 PMCID: PMC11350400 DOI: 10.1039/d4sc04797d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Microscopic electric fields are increasingly found to play a pivotal role in catalysis of enzymatic and chemical reactions. Currently, the vibrational Stark effect is the main experimental method used to measure them. Here, we demonstrate how excited-state symmetry breaking can serve as a much more sensitive tool to assess these fields. Using transient infrared spectroscopy on a quadrupolar probe equipped with nitrile groups we demonstrate both its superior sensitivity and that it does not suffer from the notorious hydrogen-bond induced upshift of the C[triple bond, length as m-dash]N stretch frequency. In combination with conventional ground-state infrared absorption, excited-state symmetry breaking can be used to disentangle even weak specific hydrogen bond interactions from general field effects. We showcase this capability with the example of weak C-H hydrogen bonds in polar aprotic solvents. Additionally, we reveal for the first time symmetry breaking driven not by solvent but by the entropy of the pendant side chains of the chromophore. Our findings not only enhance our understanding of symmetry-breaking charge-transfer phenomena but pave the way toward using them in electric field sensing modality.
Collapse
Affiliation(s)
- Bogdan Dereka
- Department of Chemistry, University of Zurich CH-8057 Zurich Switzerland
| | - Nikhil Maroli
- Department of Physics and Astronomy, University of Delaware Newark Delaware 19716 USA
| | - Yevgen M Poronik
- Institute of Organic Chemistry, Polish Academy of Sciences 01-224 Warsaw Poland
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences 01-224 Warsaw Poland
| | - Alexei A Kananenka
- Department of Physics and Astronomy, University of Delaware Newark Delaware 19716 USA
| |
Collapse
|
2
|
Dereka B, Balanikas E, Rosspeintner A, Li Z, Liska R, Vauthey E. Excited-State Symmetry Breaking and Localization in a Noncentrosymmetric Electron Donor-Acceptor-Donor Molecule. J Phys Chem Lett 2024; 15:8280-8286. [PMID: 39143858 DOI: 10.1021/acs.jpclett.4c01694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Electronic excitation in quadrupolar conjugated molecules rapidly localizes on a single electron donor-acceptor (DA) branch when in polar environments. The loss of center of inversion upon this excited-state symmetry breaking (ES-SB) can be monitored by exploiting the relaxation of the exclusion rules for IR and Raman vibrational transitions. Here, we compare ES-SB in a right-angled (1) and a centrosymmetric (2) DAD dyes using time-resolved IR spectroscopy. We show that the localization of the excitation can also be identified with the bent molecule 1. We find that contrary to dye 2, subpopulations with localized and delocalized excitation coexist for 1 in weak to medium polar solvents. This difference originates from the torsional disorder present in the excited state of 1 but not of 2. Additionally, irreversible localization in a bent molecule is shown to require higher solvent polarity than in a centrosymmetric one.
Collapse
Affiliation(s)
- Bogdan Dereka
- Department of Chemistry, University of Zurich, CH-8057 Zurich, Switzerland
| | - Evangelos Balanikas
- Department of Physical Chemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Arnulf Rosspeintner
- Department of Physical Chemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Zhiquan Li
- Institute of Applied Synthetic Chemistry, Division of Macromolecular Chemistry, Vienna University of Technology, Getreidemarkt 9/163/MC, 1060 Vienna, Austria
| | - Robert Liska
- Institute of Applied Synthetic Chemistry, Division of Macromolecular Chemistry, Vienna University of Technology, Getreidemarkt 9/163/MC, 1060 Vienna, Austria
| | - Eric Vauthey
- Department of Physical Chemistry, University of Geneva, CH-1211 Geneva, Switzerland
| |
Collapse
|
3
|
Pan ML, Hsu CH, Lin YD, Chen BH, Lu CH, Yang SD, Chou PT, Wu YT. Overcrowded 14,14'-Bidibenzo[a,j]anthracenes: Challenges in Syntheses and Atypical Property of Lacking Symmetry-Breaking Charge Transfer (SBCT). Chemistry 2024; 30:e202401063. [PMID: 38654592 DOI: 10.1002/chem.202401063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024]
Abstract
14,14'-Bidibenzo[a,j]anthracenes (BDBAs) were prepared by iridium-catalyzed annulation of 5,5'-biterphenylene with alkynes. The molecular geometries of overcrowded BDBAs were verified by X-ray crystallography. The two dibenzo[a,j]anthryl moieties are connected through the sterically hindered 14 positions, resulting in highly distorted molecular halves. The conformation with a small twist angle between two molecular halves can minimize steric conflicts between the substituents at 1 and 13 positions and the carbon atoms of the central axis, as well as steric clashes between those substituents. One such example is octafluoro-substituted BDBA, where the interplanar angle between two anthryl moieties is approximately 31° (currently the lowest reported value, cf. 81° in 9,9'-bianthracene). The intramolecular interactions and electronic couplings between two molecular halves resulted in upfield 1H NMR signals, redshifted absorption and emission bands, and a reduced HOMO-LUMO gap. Photodynamic investigations on BDBAs indicated that the formation of the conventional symmetry-breaking charge transfer (SBCT) state was suspended by restricted rocking around the central C-C bond. Such a mechanism associated with this highly constrained conformation was examined for the first time.
Collapse
Affiliation(s)
- Ming-Lun Pan
- Department of Chemistry, National Cheng Kung University, No. 1 Ta-Hsueh Rd., 701401, Tainan, Taiwan
| | - Chao-Hsien Hsu
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., 106319, Taipei, Taiwan
| | - Yan-Ding Lin
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., 106319, Taipei, Taiwan
| | - Bo-Han Chen
- Institute of Photonics Technologies, National Tsing Hua University, No.101, Section 2, Kuang-Fu Rd., 300044, Hsinchu, Taiwan
| | - Chih-Hsuan Lu
- Institute of Photonics Technologies, National Tsing Hua University, No.101, Section 2, Kuang-Fu Rd., 300044, Hsinchu, Taiwan
| | - Shang-Da Yang
- Institute of Photonics Technologies, National Tsing Hua University, No.101, Section 2, Kuang-Fu Rd., 300044, Hsinchu, Taiwan
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., 106319, Taipei, Taiwan
| | - Yao-Ting Wu
- Department of Chemistry, National Cheng Kung University, No. 1 Ta-Hsueh Rd., 701401, Tainan, Taiwan
| |
Collapse
|
4
|
Shi HX, Bao HW, Wu GY. Solvation controlled excited-state dynamics in a donor-acceptor phenazine-imidazole derivative. RSC Adv 2024; 14:17071-17076. [PMID: 38808230 PMCID: PMC11130646 DOI: 10.1039/d4ra02417f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/13/2024] [Indexed: 05/30/2024] Open
Abstract
In the past few decades, significant efforts have been devoted to developing phenazine derivatives in various fields such as medicine, pesticides, dyes, and conductive materials owing to their highly Stokes-shifted fluorescence and distinctive photophysical properties. The modulation of the surrounding environment can effectively influence the luminescent behavior of phenazine derivatives, prompting us to investigate the solvent effect on the excited state dynamics. Herein, we present the solvent controlled excited state dynamics of a novel triphenylamine-based phenazine-imidazole molecule (TPAIP) through steady-state spectra and femtosecond transient absorption spectra. The fluorescence emission spectrum exhibited a redshift with increasing solvent polarity, indicating the existence of a charge transfer state. Furthermore, by tracking the femtosecond transient absorption spectra of TPAIP, we found that the nature of the relaxed S1 state was strongly influenced by the solvent polarity: intersystem crossing character appears in apolar solvent, whereas intramolecular charge transfer character occurs in polar solvent because of solvation. These findings provide significant theoretical insights into the impact of solvents on the excited state dynamics within phenazine derivatives. This understanding supports diverse applications ranging from advanced biological probe design to photocatalysis and pharmaceutical research.
Collapse
Affiliation(s)
- Hai-Xiong Shi
- School of Chemical Engineering, Lanzhou University of Arts and Science Lanzhou Gansu 730000 China
| | - Hong-Wei Bao
- School of Chemical Engineering, Lanzhou University of Arts and Science Lanzhou Gansu 730000 China
| | - Gui-Yuan Wu
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University Wuhu 241002 China
| |
Collapse
|
5
|
Roy R, Chawla S, Sharma V, Pal AK, Silori Y, Datta A, De AK, Koner AL. Ultrafast symmetry-breaking charge separation in Perylenemonoimide-embedded multichromophores: impact of regioisomerism. Chem Sci 2024; 15:6363-6377. [PMID: 38699268 PMCID: PMC11062123 DOI: 10.1039/d3sc05325c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/20/2024] [Indexed: 05/05/2024] Open
Abstract
Symmetry-breaking charge separation (SB-CS) has recently evolved as an emerging concept offering its potential to the latest generation of organic photovoltaics. However there are several concerns that need to be addressed to reach the state-of-the-art in SB-CS chemistry, for instance, the desirable molecular geometry, interchromophoric distance and extent of electronic coupling. To shed light on those features, it is reported herein, that ortho-functionalized perylene monoimide (PMI) constituted regioisomeric dimer and trimer derivatives with varied molecular twisting and electronic conjugation have been synthesized. In steady-state photophysical studies, all the dimers and trimer derivatives exhibit a larger bathochromic shift in the emission spectra and a significant reduction of fluorescence quantum yield in polar DMF. Among the series of multichromophores, ortho- and self-coupled dimers display the strikingly different optical feature of SB-CS with a very fast charge separation rate (τCS = 80.2 ps) upon photoexcitation in DMF, which is unveiled by femtosecond transient absorption (fs-TA) studies. The SB-CS for two dimers is well-supported by the formation of PMI˙+ and PMI˙- bands in the fs-TA spectra. Further analysis of fs-TA data revealed that, among the other multichromophores the trimer also exhibits a clear charge separation, whereas SB-CS signatures are less prominent, but can not be completely disregarded, for the meta- and para-dimers. Additionally, the charge separation dynamics of those above-mentioned PMI derivatives are devoid of a kinetically favorable excimer or triplet formation. The evidence of a profound charge transfer phenomenon in the ortho-dimer is characterized by density functional theory (DFT) calculations on excited state electronic structures. The excitonic communications in the excited state electronic arrangements unravel the key role of dihedral twisting in SB-CS. The thermodynamic feasibility of CS (ΔGCS) and activation barrier (ΔG≠) of the derivatives in DMF are established from the Rehm-Weller equation and Marcus's theory, respectively. This work is an in-depth study of the effect of mutual orientation of PMIs and regioisomerism in determining sustainable guidelines for using SB-CS.
Collapse
Affiliation(s)
- Rupam Roy
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal Madhya Pradesh 462066 India
| | - Sakshi Chawla
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali Knowledge City, Sector 81, SAS Nagar Punjab 140 306 India
| | - Vikas Sharma
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal Madhya Pradesh 462066 India
| | - Arun K Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A and 2B Raja S. C. Mullick Road, Jadavpur Kolkata West Bengal 700032 India
| | - Yogita Silori
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali Knowledge City, Sector 81, SAS Nagar Punjab 140 306 India
- Department of Physics, University of Michigan Ann Arbor Michigan 48109 USA
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A and 2B Raja S. C. Mullick Road, Jadavpur Kolkata West Bengal 700032 India
| | - Arijit K De
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali Knowledge City, Sector 81, SAS Nagar Punjab 140 306 India
| | - Apurba Lal Koner
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal Madhya Pradesh 462066 India
| |
Collapse
|
6
|
Zhou Z, Yang K, He L, Wang W, Lai W, Yang Y, Dong Y, Xie S, Yuan L, Zeng Z. Sulfone-Functionalized Chichibabin's Hydrocarbons: Stable Diradicaloids with Symmetry Breaking Charge Transfer Contributing to NIR Emission beyond 900 nm. J Am Chem Soc 2024; 146:6763-6772. [PMID: 38416700 DOI: 10.1021/jacs.3c13270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
While monoradical emitters have emerged as a new route toward efficient organic light-emitting diodes, the luminescence property of organic diradicaloids is still scarcely explored. Herein, by devising a novel radical-radical coupling-based synthetic approach, we report a new class of sulfone-functionalized Chichibabin's hydrocarbon derivatives, SD-1-3, featuring varied substituent patterns and moderate to high diradical characters of 0.44-0.70, as highly stable diradicaloids with rarely seen NIR emission beyond 900 nm. Via comprehensive experimental and theoretical investigations, we reveal that the optoelectronic and magnetic properties of these materials are significantly tuned by the variations of substitutions (H/CF3/OMe) on the molecular skeletons. More importantly, quantum chemical computations indicate that the embedding of sulfone groups has contributed to a breaking of their quasi-C2 symmetry of these diradicaloid molecules and results in an excited-state charge transfer character. Therefore, a remarkably deep NIR emissive wavelength of up to 998 nm, together with a large Stokes shift (∼386 nm), is achieved for the CF3-based SD-2 molecule in tetrahydrofuran. To the best of our knowledge, such a luminescent wavelength of SD-2 has represented the longest wavelengths among the currently reported organic fluorescent radicals. Overall, our work not only establishes a new synthetic approach toward stable Chichibabin's hydrocarbons but also paves the way for designing NIR emissive open-shell materials with both fundamental understanding and feasible control of their luminescent properties.
Collapse
Affiliation(s)
- Zhibiao Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan University, Changsha 410082, China
- Shenzhen Research Institute of Hunan University,Nanshan District, Shenzhen 518000, China
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Kun Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan University, Changsha 410082, China
- Shenzhen Research Institute of Hunan University,Nanshan District, Shenzhen 518000, China
| | - Long He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan University, Changsha 410082, China
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Weiming Lai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan University, Changsha 410082, China
- Shenzhen Research Institute of Hunan University,Nanshan District, Shenzhen 518000, China
| | - Yinhua Yang
- Core Research Facilities, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yueguo Dong
- Tianjin Jiuri New Material Co., Ltd., Tianjin 300384, China
| | - Sheng Xie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan University, Changsha 410082, China
- Shenzhen Research Institute of Hunan University,Nanshan District, Shenzhen 518000, China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan University, Changsha 410082, China
- Shenzhen Research Institute of Hunan University,Nanshan District, Shenzhen 518000, China
| | - Zebing Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan University, Changsha 410082, China
- Shenzhen Research Institute of Hunan University,Nanshan District, Shenzhen 518000, China
| |
Collapse
|
7
|
Balanikas E, Reymond-Joubin M, Vauthey E. Excited-State Symmetry Breaking in Solvent Mixtures. J Phys Chem Lett 2024; 15:2447-2452. [PMID: 38407054 DOI: 10.1021/acs.jpclett.4c00213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
A large number of multipolar dyes undergo excited-state symmetry breaking (ESSB) in polar media. During this process, electronic excitation, initially distributed evenly over the molecule, localizes, at least partially, on one donor-acceptor branch. To resolve its initial stage, ESSB is investigated with a donor-acceptor-donor dye in binary mixtures of nonpolar and polar solvents using time-resolved infrared absorption spectroscopy. The presence of a few polar molecules around the dye is sufficient to initiate ESSB. Although the extent of asymmetry in a mixture is close to that in a pure solvent of similar polarity, the dynamics are slower and involve translational diffusion. However, preferential solvation in the mixtures leads to a larger local polarity. Furthermore, inhomogeneous broadening of the S1 ← S0 absorption band of the dye is observed in the mixtures, allowing for a photoselection of solutes with different local environments and ESSB dynamics.
Collapse
Affiliation(s)
- Evangelos Balanikas
- Department of Physical Chemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Maric Reymond-Joubin
- Department of Physical Chemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Eric Vauthey
- Department of Physical Chemistry, University of Geneva, CH-1211 Geneva, Switzerland
| |
Collapse
|
8
|
Mikhailova TV, Ivanov AI. Controlling the symmetry breaking charge transfer extent in excited quadrupolar molecules by tuning the locally excited state. J Chem Phys 2024; 160:054302. [PMID: 38310475 DOI: 10.1063/5.0193532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/16/2024] [Indexed: 02/05/2024] Open
Abstract
The effect of a locally excited state on charge transfer symmetry breaking (SBCT) in excited quadrupolar molecules in solutions has been studied. The interaction of a locally excited state and two zwitterionic states is found to either increase or decrease the degree of SBCT depending on the molecular parameters. A strategy on how to adjust the molecular parameters to control the extent of SBCT is presented. The influence of level degeneracy on SBCT is identified and discussed in detail. The level degeneracy is shown to lead to the existence of a hidden dipole moment in excited quadrupolar molecules. Its manifestations in SBCT are analyzed. The main conclusions are consistent with the available experimental data.
Collapse
Affiliation(s)
| | - Anatoly I Ivanov
- Volgograd State University, University Avenue 100, Volgograd 400062, Russia
| |
Collapse
|
9
|
Verma P, Tasior M, Roy P, Meech SR, Gryko DT, Vauthey E. Excited-state symmetry breaking in quadrupolar pull-push-pull molecules: dicyanovinyl vs. cyanophenyl acceptors. Phys Chem Chem Phys 2023; 25:22689-22699. [PMID: 37602791 PMCID: PMC10467566 DOI: 10.1039/d3cp02810k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023]
Abstract
A significant number of quadrupolar dyes behave as their dipolar analogues when photoexcited in polar environments. This is due to the occurrence of excited-state symmetry breaking (ES-SB), upon which the electronic excitation, initially distributed over the whole molecule, localises preferentially on one side. Here, we investigate the ES-SB properties of two A-D-A dyes, consisting of a pyrrolo-pyrrole donor (D) and either cyanophenyl or dicyanovinyl acceptors (A). For this, we use time-resolved vibrational spectroscopy, comparing IR absorption and femtosecond stimulated Raman spectroscopies. Although dicyanovinyl is a stronger electron-withdrawing group, ES-SB is not observed with the dicyanovinyl-based dye even in highly polar media, whereas it already takes place in weakly polar solvents with dyes containing cyanophenyl accepting groups. This difference is attributed to the large electronic coupling between the D-A branches in the former dye, whose loss upon symmetry breaking cannot be counterbalanced by a gain in solvation energy. Comparison with analogues of the cyanophenyl-based dye containing different spacers reveals that interbranch coupling does not so much depend on the distance between the D-A subunits than on the nature of the spacer. We show that transient Raman spectra probe different modes of these centrosymmetric molecules but are consistent with the transient IR data. However, lifetime broadening of the Raman bands, probably due to the resonance enhancement, may limit the application of this technique for monitoring ES-SB.
Collapse
Affiliation(s)
- Pragya Verma
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211, Geneva 4, Switzerland.
| | - Mariusz Tasior
- Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Palas Roy
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Stephen R Meech
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Eric Vauthey
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211, Geneva 4, Switzerland.
| |
Collapse
|
10
|
Ma L, Kuang Z, Wang Z, Zhao H, Wan Y, Zhang XF, Li Y, Xia A. Ultrafast Charge Separation Driven by Torsional Motion in Orthogonal Boron Dipyrromethene Dimer. J Phys Chem Lett 2023; 14:702-708. [PMID: 36646067 DOI: 10.1021/acs.jpclett.2c03581] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this work, the photoinduced charge separation (CS) via symmetry breaking in an orthogonal meso-β-linked boron dipyrromethene (BODIPY) dimer was investigated by polarized transient absorption spectroscopy. The time constant about 0.76 ps of the CS reaction determined in dimethyl sulfoxide is much faster than the solvation dynamics. The observed transient anisotropy of the BODIPY anion band implies that both hole and electron transfers occur with similar probabilities. The bidirectional charge transfer processes suggest that the locally excited state is weakly coupled to the polar solvent, and the solvation coupled excited-state structural relaxation within the BODIPY monomeric unit is rather limited. In combination with the electronic excitation analysis based on time-dependent density-functional theory calculations, we deduced that the CS in the orthogonal BODIPY dimer is enabled via the torsional motion associated with covalently connected BODIPY units, promoting the electronic coupling, and irrelevant to the dynamic solvent relaxation.
Collapse
Affiliation(s)
- Lin Ma
- State Key Laboratory of Information Photonic and Optical Communications and School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, People's Republic of China
| | - Zhuoran Kuang
- State Key Laboratory of Information Photonic and Optical Communications and School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, People's Republic of China
| | - Zeming Wang
- State Key Laboratory of Information Photonic and Optical Communications and School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, People's Republic of China
| | - Hongmei Zhao
- State Key Laboratory of Information Photonic and Optical Communications and School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, People's Republic of China
| | - Yan Wan
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Xian-Fu Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People's Republic of China
| | - Yang Li
- State Key Laboratory of Information Photonic and Optical Communications and School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, People's Republic of China
| | - Andong Xia
- State Key Laboratory of Information Photonic and Optical Communications and School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, People's Republic of China
| |
Collapse
|
11
|
Fakis M, Petropoulos V, Hrobárik P, Nociarová J, Osuský P, Maiuri M, Cerullo G. Exploring Solvent and Substituent Effects on the Excited State Dynamics and Symmetry Breaking of Quadrupolar Triarylamine End-Capped Benzothiazole Chromophores by Femtosecond Spectroscopy. J Phys Chem B 2022; 126:8532-8543. [PMID: 36256786 DOI: 10.1021/acs.jpcb.2c03103] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We investigate herein the excited state dynamics and symmetry breaking processes in three benzothiazole-derived two-photon absorbing chromophores by femtosecond fluorescence and transient absorption (fs-TA) spectroscopies in solvents of various polarity. The chromophores feature a quasi-quadrupolar D-π-A-π-D architecture comprised of an electron-withdrawing benzothiazole core and lateral triphenylamine donors (Qbtz-H), while the acceptor strength of the central unit is enforced by attached cyano groups (Qbtz-CN) and the electron-donating strength of the arylamine moieties by introduction of peripheral methoxy groups (Qbtz'-CN). Steady state spectroscopy reveals positive solvatochromism, which is mostly pronounced for Qbtz'-CN. Femtosecond spectroscopy of Qbtz-H reveals the coexistence of the Franck-Condon (FC) state and states populated after symmetry breaking (SB) in low-polarity solvents such as toluene and tetrahydrofuran, while the SB state becomes favorable in polar acetonitrile. For the other two molecules possessing a stronger electron-accepting unit and thus more polar excited state, SB takes place even in low-polarity solvents, as shown by fs-TA spectroscopy. Global fitting of the fs-TA spectra together with investigation of the evolution associated spectra (EAS) reveals the existence of an initial FC state in Qbtz-H, in all studied solvents, which relaxes toward Intermediate Charge Transfer (I-CT) and SB states. On the other hand, for Qbtz-CN and Qbtz'-CN in more polar solvents, the FC state undergoes ultrafast relaxation toward symmetry-broken charge transfer (SB-CT) states which in turn show very fast recombination to the ground state. Our measurements confirm that the extent of symmetry breaking is larger for D-π-A-π-D systems with the stronger acceptor core and increases further by increasing electron-donating strength of triarylamine moieties, giving rise to symmetry breaking in these nonionic quadrupolar molecules with ethynylene (triple bond) π-spacers also in less polar solvents.
Collapse
Affiliation(s)
- Mihalis Fakis
- Department of Physics, University of Patras, PatrasGR-26500, Greece
| | - Vasilis Petropoulos
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133Milan, Italy
| | - Peter Hrobárik
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, SK-84215Bratislava, Slovakia
| | - Jela Nociarová
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, SK-84215Bratislava, Slovakia
| | - Patrik Osuský
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, SK-84215Bratislava, Slovakia
| | - Margherita Maiuri
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133Milan, Italy
| | - Giulio Cerullo
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133Milan, Italy
| |
Collapse
|
12
|
Efficient conversion of H2S into mercaptan alcohol by tertiary-amine functionalized ionic liquids. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
13
|
Niu X, Tajima K, Kong J, Tao M, Fukui N, Kuang Z, Shinokubo H, Xia A. Symmetry-breaking charge separation in a nitrogen-bridged naphthalene monoimide dimer. Phys Chem Chem Phys 2022; 24:14007-14015. [PMID: 35635531 DOI: 10.1039/d2cp00295g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photophysical properties of 4-aminonaphthalene-1,8-imide-based derivatives, bis-ANI, consisting of two naphthalimide (NI) units linked by a butylamine bridge and its monomer ANI have been intensively investigated by steady-state and transient spectroscopy combined with quantum chemical calculations. The excited state relaxation dynamics of the two molecules are studied in three solvents of varying polarity - from hexane to tetrahydrofuran to acetone. A strong reduction in the fluorescence quantum yields and larger red shifts of the emission spectra are observed when going from the monomer ANI to dimer bis-ANI with increasing solvent polarity. It is found that the presence of the central amino linker in bis-ANI facilitates the formation of an asymmetric CS state between the ANI and NI moieties in bis-ANI, where NI˙- is the dominant radical anion unit after CS, evidenced by the femtosecond transient absorption measurements and spectroelectrochemistry in polar solvents. Femtosecond transient absorption spectra and quantum chemical calculations reveal the conformational change after the formation of the symmetry-breaking charge separation (SBCS) state upon photoexcitation, while a near-orthogonal structure in the excited state of bis-ANI retards charge recombination. In addition, it is evidenced that the rate of SBCS can be tuned by changing the different polar solvents.
Collapse
Affiliation(s)
- Xinmiao Niu
- State Key Laboratory of Information Photonic and Optical Communications, School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100176, P. R. China. .,Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Keita Tajima
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan.
| | - Jie Kong
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Min Tao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Norihito Fukui
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan.
| | - Zhuoran Kuang
- State Key Laboratory of Information Photonic and Optical Communications, School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100176, P. R. China.
| | - Hiroshi Shinokubo
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan.
| | - Andong Xia
- State Key Laboratory of Information Photonic and Optical Communications, School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100176, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
14
|
Zhang W, Kong J, Xu W, Niu X, Song D, Liu W, Xia A. Probing effect of solvation on photoexcited quadrupolar donor-acceptor-donor molecule via ultrafast Raman spectroscopy. CHINESE J CHEM PHYS 2022. [DOI: 10.1063/1674-0068/cjcp2111223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The symmetric and quadrupolar donor-acceptor-donor (D-A-D) molecules usually exhibit excited-state charge redistribution process from delocalized intramolecular charge transfer (ICT) state to localized ICT state. Direct observation of such charge redistribution process in real-time has been intensively studied via various ultrafast time-resolved spectroscopies. Femtosecond stimulated Raman spectroscopy (FSRS) is one of the powerful methods which can be used to determine the excited state dynamics by tracking vibrational mode evolution of the specific chemical bonds within molecules. Herein, a molecule, 4,4′-(buta-1,3-diyne-1,4-diyl)bis( N, N-bis(4-methoxyphenyl)aniline), that consists of two central adjacent alkyne (-C≡C-) groups as electron-acceptors and two separated, symmetric N, N-bis(4-methoxyphenyl)aniline at both branches as electron-donors, is chosen to investigate the excited-state photophysical properties. It is shown that the solvation induced excited-state charge redistribution in polar solvents can be probed by using femtosecond stimulated Raman spectroscopy. The results provide a fundamental understanding of photoexcitation induced charge delocalization/localization properties of the symmetric quadrupolar molecules with adjacent vibrational markers located at central position.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Information Photonic and Optical Communications, School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, China
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jie Kong
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Wenqi Xu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- STU SIOM Joint Laboratory for Superintense Lasers and the Applications, Shanghai 201210, China
| | - Xinmiao Niu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Di Song
- State Key Laboratory of Information Photonic and Optical Communications, School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, China
| | - Weimin Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- STU SIOM Joint Laboratory for Superintense Lasers and the Applications, Shanghai 201210, China
| | - Andong Xia
- State Key Laboratory of Information Photonic and Optical Communications, School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, China
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
15
|
Antipov IF, Ivanov AI. Effect of Symmetry Breaking in Excited Quadrupole Molecules on Transition Dipole Moment. J Phys Chem B 2021; 125:13778-13788. [PMID: 34894694 DOI: 10.1021/acs.jpcb.1c08666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Manifestations of charge transfer symmetry breaking in excited quadrupolar molecules in optical spectra are theoretically studied. The molecules are supposed to have π-conjugated structures of A-π-D-π-A or D-π-A-π-D character, where electron acceptors (A) or electron donors (D) are identical. A theory describing the effect of symmetry breaking and solvent fluctuations on the dipole moments of optical transitions associated with absorption by a quadrupolar dye in the ground and excited states, as well as fluorescence, is developed. Simple equations describing the influence of the symmetry breaking extent on the transition dipole moments are found. The orientational solvent fluctuations are predicted to decrease the transition dipole moment of the ground state absorption. The decrease does not exceed 10%. A considerably larger effect of symmetry breaking and the solvent fluctuations on the emission dipole moment is found. Equations describing dependencies of the transition dipole moment associated with excited state absorption on the solvent polarity and the parameters of the dye are derived. The scale of the changes in the transition dipole moments due to symmetry breaking in the excited state are determined. The influence of the polar solvent fluctuations is also taken into account. The theoretical findings are shown to be consistent with the available experimental data.
Collapse
Affiliation(s)
- Ivan F Antipov
- Volgograd State University, University Avenue 100, Volgograd 400062, Russia
| | - Anatoly I Ivanov
- Volgograd State University, University Avenue 100, Volgograd 400062, Russia
| |
Collapse
|
16
|
Usta H, Cosut B, Alkan F. Understanding and Tailoring Excited State Properties in Solution-Processable Oligo( p-phenyleneethynylene)s: Highly Fluorescent Hybridized Local and Charge Transfer Character via Experiment and Theory. J Phys Chem B 2021; 125:11717-11731. [PMID: 34644090 DOI: 10.1021/acs.jpcb.1c07165] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rod-shaped oligo(p-phenyleneethynylene) (OPE) offers an attractive π-framework for the development of solution-processable highly fluorescent molecules having tunable hybridized local and charge transfer (HLCT) excited states and (reverse) intersystem crossing ((R)ISC) channels. Herein, an HLCT oligo(p-phenyleneethynylene) library was studied for the first time in the literature in detail systematically via experiment and theory. The design, synthesis, and full characterization of a new highly fluorescent (ΦPL-solution ∼ 1) sky blue emissive 4',4‴-((2,5-bis((2-ethylhexyl)oxy)-1,4-phenylene)bis(ethyne-2,1-diyl))bis(N,N-diphenyl-[1,1'-biphenyl]-4-amine) (2EHO-TPA-PE) was also reported. The new molecule consists of a D'-Ar-π-D-π-Ar-D' molecular architecture with an extended π-spacer and no acceptor unit, and detailed structural, physicochemical, single-crystal, and optoelectronic characterizations were performed. A high solid-state quantum efficiency (ΦPL-solid state ∼ 0.8) was achieved as a result of suppressed exciton-phonon/vibronic couplings (no π-π interactions and multiple (14 per dimeric form) strong C-H···π interactions). Strong solution-phase/solid-state dipole-dependent tunable excited state behavior (local excited (LE) → HLCT → charge transfer (CT)) and decay dynamics covering a wide spectral region were demonstrated, and the CT state was observed to be highly fluorescent despite extremely large Stokes shift (∼130 nm)/fwhm (∼125 nm) and significant charge separation (0.75 charge·nm). Employing the Lippert-Mataga model, along with detailed photophysical studies and TDDFT calculations, key relationships between molecular design-electronic structure-exciton characteristics were elucidated with regards to HLCT and hot exciton channel formations. The interstate coupling between CT and LE states and the interplay of this coupling with respect to medium polarity were explored. A key relationship between excited-state symmetry breaking process and the formation of HLCT state was discussed for TPA-ended rod-shaped OPE π-systems. (R)ISC-related delayed fluorescence (τ ∼ 2-6 ns) processes were evident following the prompt decays (∼0.4-0.9 ns) both in the solution and in the solid-state. As a unique observation, the delayed fluorescence could be tuned and facilitated via small dielectric changes in the medium. Our results and the molecular engineering perspectives presented in this study may provide unique insights into the structural and electronic factors governing tunable excited state and hot-exciton channel formations in OPEs for (un)conventional solution-processed luminescence applications.
Collapse
Affiliation(s)
- Hakan Usta
- Department of Nanotechnology Engineering, Abdullah Gül University, 38080 Kayseri, Turkey
| | - Bunyemin Cosut
- Department of Chemistry, Gebze Technical University, 41400 Gebze, Kocaeli, Turkey
| | - Fahri Alkan
- Department of Nanotechnology Engineering, Abdullah Gül University, 38080 Kayseri, Turkey
| |
Collapse
|
17
|
Barrett BJ, Jimenez D, Klausen RS, Bragg AE. Intramolecular Photoinduced Charge Transfer and Recombination Dynamics in Vinylarene Terminated Organosilanes. J Phys Chem B 2021; 125:8460-8471. [PMID: 34296881 DOI: 10.1021/acs.jpcb.1c01297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report on charge-transfer dynamics of newly designed acceptor-donor-acceptor organosilanes, with a specific focus on how donor-acceptor combination and local chemical environment can be used to control the lifetime for intramolecular charge-separation between silane electron donors and organic acceptors. In this work linear oligosilanes were capped with arene-vinyl end groups of variable electron-accepting strength: weak (diester vinyl), intermediate (ester,cyano vinyl), and strong (dicyanovinyl). Ultrafast transient absorption spectroscopy was used to characterize their structure-dependent charge-transfer and recombination behaviors. All structures exhibit similar photoinduced ultrafast spectral dynamics that we ascribe to relaxation of the nascent charge-separated excited state followed by a return to the ground state via charge recombination. We find that relaxation of the nascent "hot" charge-separated excited state scales with the strength of dipole-dipole interactions between solvent molecules and the polar arene-vinyl acceptor. Furthermore, electron-accepting strength governs whether electronic coupling dictates charge recombination rate: weak acceptors produce charge-separated states that exhibit relatively large electronic coupling for back-electron transfer (approaching the adiabatic limit) that result in fast recombination, whereas the strong and moderate-strength acceptors support more stable charge-separated states with weaker coupling and longer lifetimes. We find that recombination rates increase substantially for structures with weak and moderate-strength acceptors in cyclohexane (i.e., negligible solvent reorganization energy), which we attribute to an increased electronic coupling in a nonpolar solvent environment where charge pairs are weakly screened. In contrast, for structures with strong electron acceptors, the very low reorganization energy of cyclohexane places back-electron transfer even further into the Marcus inverted regime, with a resultant increase in charge-separation lifetime. Together these results provide critical insights on how to tune photoinduced charge-transfer behavior in organic-inorganic hybrids that have potential material applications in molecular electronics and optoelectronics.
Collapse
Affiliation(s)
- Brandon J Barrett
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Daniel Jimenez
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Rebekka S Klausen
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Arthur E Bragg
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
18
|
Bondarev SL, Raichenok TF, Tikhomirov SA, Kozlov NG, Mikhailova TV, Ivanov AI. Symmetry Breaking in an Excited Quadrupolar Acridine-Dione Derivative Driven by Hydrogen Bonding. J Phys Chem B 2021; 125:8117-8124. [PMID: 34266232 DOI: 10.1021/acs.jpcb.1c03745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An acridine-dione derivative (3,3,11,11-tetramethyl-8,16-diphenyl-3,4,8,10,11,12,13,16-octahydroacridino[4,3-c]acridine-1.9(2H,5H)dion) with quadrupolar motif has been synthesized and its stationary and transient spectra have been measured. Stationary absorption and fluorescence spectra as well as nonstationary spectra show no signs of symmetry breaking (SB) in aprotic solvents, even of high polarity. The specific features of SB are revealed in alcohol solvents through a considerable red shift of stationary fluorescence spectra and the appearance of a new excited state absorption band in transient absorption spectra. SB is due to the formation of asymmetric strong hydrogen bonds, mainly on one side of the molecule. An unexpected regularity of symmetry breaking is found in mixtures of aprotic dimethylformamide and protic methanol, where methanol acts as a fluorescence quencher. It is revealed that there is no quenching as long as the methanol concentration is less than the critical value of 9 M. This leads to the conclusion that SB in such mixtures is possible only if the concentration of the protic solvent exceeds a certain threshold value.
Collapse
Affiliation(s)
- Stanislav L Bondarev
- B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Prospect Nezavisimosti 68, Minsk BY-220072, Republic of Belarus
| | - Tamara F Raichenok
- B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Prospect Nezavisimosti 68, Minsk BY-220072, Republic of Belarus
| | - Sergei A Tikhomirov
- B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Prospect Nezavisimosti 68, Minsk BY-220072, Republic of Belarus
| | - Nikolai G Kozlov
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, Surganov str. 13, Minsk BY-220072, Republic of Belarus
| | | | - Anatoly I Ivanov
- Volgograd State University, University Avenue 100, Volgograd 400062, Russia
| |
Collapse
|
19
|
Zhang W, Xu W, Zhang G, Kong J, Niu X, Chan JMW, Liu W, Xia A. Direct Tracking Excited-State Intramolecular Charge Redistribution of Acceptor-Donor-Acceptor Molecule by Means of Femtosecond Stimulated Raman Spectroscopy. J Phys Chem B 2021; 125:4456-4464. [PMID: 33902280 DOI: 10.1021/acs.jpcb.1c01742] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Symmetric quadrupolar molecules generally exhibit apolar ground states and dipolar excited states in a polar environment, which is explained by the excited state evolution from initial charge delocalization over all molecules to localization on one branch of the molecules after a femtosecond pulse excitation. However, direct observation of excited-state charge redistribution (delocalization/localization) is hardly accessible. Here, the intramolecular charge delocalization/localization character of a newly synthesized acceptor-donor-acceptor molecule (ADA) has been intensively investigated by femtosecond stimulated Raman scattering (FSRS) together with femtosecond transient absorption (fs-TA) spectroscopy. By tracking the excited state Raman spectra of the specific alkynyl (-C≡C-) bonds at each branch of ADA, we found that the nature of the relaxed S1 state is strongly governed by solvent polarity: symmetric delocalized intramolecular charge transfer (ICT) characters occurred in apolar solvent, whereas the asymmetric localized ICT characters appeared in polar solvent because of solvation. The solvation dynamics of ADA extracted from fs-TA is consistent with the time constants obtained by FSRS, but the FSRS clearly tracks the excited state intramolecular charge transfer delocalization/localization.
Collapse
Affiliation(s)
- Wei Zhang
- School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P. R. China.,Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R China.,University of Chinese Academy of Sciences, Beijing 100049, P. R China
| | - Wenqi Xu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China.,STU & SIOM Joint Laboratory for Superintense Lasers and the Applications, Shanghai 201210, P. R. China
| | - Guoxian Zhang
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt., Ottawa, Ontario K1N 6N5, Canada
| | - Jie Kong
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R China.,University of Chinese Academy of Sciences, Beijing 100049, P. R China
| | - Xinmiao Niu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R China.,University of Chinese Academy of Sciences, Beijing 100049, P. R China
| | - Julian M W Chan
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt., Ottawa, Ontario K1N 6N5, Canada
| | - Weimin Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China.,STU & SIOM Joint Laboratory for Superintense Lasers and the Applications, Shanghai 201210, P. R. China
| | - Andong Xia
- School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P. R. China.,Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R China
| |
Collapse
|
20
|
Kim S, Ahn DS, Ahn M, Wee KR, Choi J, Ihee H. Charge transfer induced by electronic state mixing in a symmetric X-Y-X-type multi-chromophore system. Phys Chem Chem Phys 2020; 22:28440-28447. [PMID: 33305764 DOI: 10.1039/d0cp05132b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Charge transfer (CT) from electron donor (D) to acceptor (A) plays an important role in photoelectric or electrochemical devices and is a useful concept for a molecule with D and A well distinguishable. Here, we report our finding that even in a molecule with D and A not resolvable, CT can be induced by electronic state mixing (ESM) in a symmetric multi-chromophore system (MCS), namely 1,4-di(1-pyrenyl)benzene (Py-Benz-Py). Unlike Py and Py-Benz, Py-Benz-Py exhibits unique photophysical properties attributable to the reduction of the energy gap between two electronic states induced by ESM. The ESM for Py-Benz-Py is due to the extended π-conjugation owing to the further introduction of Py into Py-Benz, and consequently leads to the favorable intramolecular CT, followed by the planarization due to the twisting motion between Py and phenyl moieties. Time-resolved spectroscopic data demonstrate that the twisting process of the Py moiety in acetonitrile occurs with two unequal time constants, suggesting the localized CT state and the asynchronous twisting dynamics of two Py moieties unlike the delocalized CT state in nonpolar and low-polarity solvents leading to the synchronous twisting of two Py moieties. This means that the symmetry-breaking CT in MCSs can induce an asynchronous twisting motion. The results reported here support that a molecule without CT can be turned into another molecule with CT induced by ESM and demonstrate that the excited-state relaxation dynamics can be regulated through the ESM induced by introducing the substituents or changing the environmental factors such as solvent polarities.
Collapse
Affiliation(s)
- Siin Kim
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | | | | | | | | | | |
Collapse
|